Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Presynaptic GABAA receptors enhance transmission and LTP induction at hippocampal mossy fiber synapses

Abstract

Presynaptic GABAA receptors (GABAARs) occur at hippocampal mossy fiber synapses. Whether and how they modulate orthodromic signaling to postsynaptic targets is poorly understood. We found that an endogenous neurosteroid that is selective for high-affinity δ subunit–containing GABAARs depolarized rat mossy fiber boutons, enhanced action potential–dependent Ca2+ transients and facilitated glutamatergic transmission to pyramidal neurons. Conversely, blocking GABAARs hyperpolarized mossy fiber boutons, increased their input resistance, decreased spike width and attenuated action potential–dependent presynaptic Ca2+ transients, indicating that a subset of presynaptic GABA receptors are tonically active. Blocking GABAARs also interfered with the induction of long-term potentiation at mossy fiber–CA3 synapses. Presynaptic GABAARs therefore facilitate information flow to the hippocampus both directly and by enhancing LTP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: THDOC modulates GABAA receptors in outside-out patches from mossy fiber boutons.
Figure 2: Noninvasive measurement of mossy fiber membrane potential and modulation via GABAA receptors.
Figure 3: Blocking GABAA receptors reveals a tonic current in mossy fiber boutons.
Figure 4: Tonic GABAA receptor–mediated currents modulate the electrical properties of mossy fiber boutons.
Figure 5: Tonically active neurosteroid-sensitive GABAA receptors enhance presynaptic action potential–dependent Ca2+ transients in giant mossy fiber boutons.
Figure 6: Bidirectional modulation of synaptic transmission via tonically active GABAA receptors at mossy fibers.
Figure 7: GABAA receptors facilitate mossy fiber LTP.

Similar content being viewed by others

References

  1. Kullmann, D.M. et al. Presynaptic, extrasynaptic and axonal GABAA receptors in the CNS: where and why? Prog. Biophys. Mol. Biol. 87, 33–46 (2005).

    Article  CAS  Google Scholar 

  2. Trigo, F.F., Marty, A. & Stell, B.M. Axonal GABAA receptors. Eur. J. Neurosci. 28, 841–848 (2008).

    Article  Google Scholar 

  3. Ruiz, A. et al. GABAA receptors at hippocampal mossy fibers. Neuron 39, 961–973 (2003).

    Article  CAS  Google Scholar 

  4. Nakamura, M., Sekino, Y. & Manabe, T. GABAergic interneurons facilitate mossy fiber excitability in the developing hippocampus. J. Neurosci. 27, 1365–1373 (2007).

    Article  CAS  Google Scholar 

  5. Jang, I.S., Nakamura, M., Ito, Y. & Akaike, N. Presynaptic GABAA receptors facilitate spontaneous glutamate release from presynaptic terminals on mechanically dissociated rat CA3 pyramidal neurons. Neuroscience 138, 25–35 (2006).

    Article  CAS  Google Scholar 

  6. Alle, H. & Geiger, J.R.P. GABAergic spill-over transmission onto hippocampal mossy fiber boutons. J. Neurosci. 27, 942–950 (2007).

    Article  CAS  Google Scholar 

  7. Han, J.W. et al. Differential pharmacological properties of GABA(A) receptors in axon terminals and soma of dentate gyrus granule cells. J. Neurochem. 109, 995–1007 (2009).

    Article  CAS  Google Scholar 

  8. Chandra, D. et al. GABAA receptor alpha 4 subunits mediate extrasynaptic inhibition in thalamus and dentate gyrus and the action of gaboxadol. Proc. Natl. Acad. Sci. USA 103, 15230–15235 (2006).

    Article  CAS  Google Scholar 

  9. Wei, W., Zhang, N., Peng, Z., Houser, C.R. & Mody, I. Perisynaptic localization of delta subunit-containing GABA(A) receptors and their activation by GABA spillover in the mouse dentate gyrus. J. Neurosci. 23, 10650–10661 (2003).

    Article  CAS  Google Scholar 

  10. Stell, B.M., Brickley, S.G., Tang, C.Y., Farrant, M. & Mody, I. Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by delta subunit-containing GABAA receptors. Proc. Natl. Acad. Sci. USA 100, 14439–14444 (2003).

    Article  CAS  Google Scholar 

  11. Mangan, P.S. et al. Cultured hippocampal pyramidal neurons express two kinds of GABAA receptors. Mol. Pharmacol. 67, 775–788 (2005).

    Article  CAS  Google Scholar 

  12. Nusser, Z., Sieghart, W. & Somogyi, P. Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J. Neurosci. 18, 1693–1703 (1998).

    Article  CAS  Google Scholar 

  13. Wohlfarth, K.M., Bianchi, M.T. & Macdonald, R.L. Enhanced neurosteroid potentiation of ternary GABA(A) receptors containing the delta subunit. J. Neurosci. 22, 1541–1549 (2002).

    Article  CAS  Google Scholar 

  14. Belelli, D. & Lambert, J.J. Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat. Rev. Neurosci. 6, 565–575 (2005).

    Article  CAS  Google Scholar 

  15. Sperk, G., Schwarzer, C., Tsunashima, K., Fuchs, K. & Sieghart, W. GABA(A) receptor subunits in the rat hippocampus I: immunocytochemical distribution of 13 subunits. Neuroscience 80, 987–1000 (1997).

    Article  CAS  Google Scholar 

  16. Bischofberger, J., Engel, D., Li, L., Geiger, J.R.P. & Jonas, P. Patch-clamp recording from mossy fiber terminals in hippocampal slices. Nat. Protoc. 1, 2075–2081 (2006).

    Article  CAS  Google Scholar 

  17. Geiger, J.R. & Jonas, P. Dynamic control of presynaptic Ca(2+) inflow by fast-inactivating K(+) channels in hippocampal mossy fiber boutons. Neuron 28, 927–939 (2000).

    Article  CAS  Google Scholar 

  18. Fricker, D., Verheugen, J.A. & Miles, R. Cell-attached measurements of the firing threshold of rat hippocampal neurones. J. Physiol. (Lond.) 517, 791–804 (1999).

    Article  CAS  Google Scholar 

  19. Verheugen, J.A., Fricker, D. & Miles, R. Noninvasive measurements of the membrane potential and GABAergic action in hippocampal interneurons. J. Neurosci. 19, 2546–2555 (1999).

    Article  CAS  Google Scholar 

  20. Price, G.D. & Trussell, L.O. Estimate of the chloride concentration in a central glutamatergic terminal: a gramicidin perforated-patch study on the calyx of Held. J. Neurosci. 26, 11432–11436 (2006).

    Article  CAS  Google Scholar 

  21. Scott, R. & Rusakov, D.A. Main determinants of presynaptic Ca2+ dynamics at individual mossy fiber–CA3 pyramidal cell synapses. J. Neurosci. 26, 7071–7081 (2006).

    Article  CAS  Google Scholar 

  22. Scott, R., Ruiz, A., Henneberger, C., Kullmann, D.M. & Rusakov, D.A. Analog modulation of mossy fiber transmission is uncoupled from changes in presynaptic Ca2+. J. Neurosci. 28, 7765–7773 (2008).

    Article  CAS  Google Scholar 

  23. Scott, R., Lalic, T., Kullmann, D.M., Capogna, M. & Rusakov, D.A. Target-cell specificity of kainate autoreceptor and Ca2+ store–dependent short-term plasticity at hippocampal mossy fiber synapses. J. Neurosci. 28, 13139–13149 (2008).

    Article  CAS  Google Scholar 

  24. Bischofberger, J., Geiger, J.R.P. & Jonas, P. Timing and efficacy of Ca2+ channel activation in hippocampal mossy fiber boutons. J. Neurosci. 22, 10593–10602 (2002).

    Article  CAS  Google Scholar 

  25. Yakushiji, T., Tokutomi, N., Akaike, N. & Carpenter, D.O. Antagonists of GABA responses, studied using internally perfused frog dorsal root ganglion neurons. Neuroscience 22, 1123–1133 (1987).

    Article  CAS  Google Scholar 

  26. Schmitz, D., Mellor, J., Breustedt, J. & Nicoll, R.A. Presynaptic kainate receptors impart an associative property to hippocampal mossy fiber long-term potentiation. Nat. Neurosci. 6, 1058–1063 (2003).

    Article  CAS  Google Scholar 

  27. Regehr, W.G. & Tank, D.W. The maintenance of LTP at hippocampal mossy fiber synapses is independent of sustained presynaptic calcium. Neuron 7, 451–459 (1991).

    Article  CAS  Google Scholar 

  28. Walker, M.C., Ruiz, A. & Kullmann, D.M. Monosynaptic GABAergic signaling from dentate to CA3 with a pharmacological and physiological profile typical of mossy fiber synapses. Neuron 29, 703–715 (2001).

    Article  CAS  Google Scholar 

  29. Nicoll, R.A. & Schmitz, D. Synaptic plasticity at hippocampal mossy fiber synapses. Nat. Rev. Neurosci. 6, 863–876 (2005).

    Article  CAS  Google Scholar 

  30. Alle, H. & Geiger, J.R.P. Combined analog and action potential coding in hippocampal mossy fibers. Science 311, 1290–1293 (2006).

    Article  CAS  Google Scholar 

  31. Glykys, J. & Mody, I. Activation of GABAA receptors: views from outside the synaptic cleft. Neuron 56, 763–770 (2007).

    Article  CAS  Google Scholar 

  32. Mortensen, M. & Smart, T.G. Extrasynaptic alphabeta subunit GABAA receptors on rat hippocampal pyramidal neurons. J. Physiol. (Lond.) 577, 841–856 (2006).

    Article  CAS  Google Scholar 

  33. Birnir, B., Eghbali, M., Everitt, A.B. & Gage, P.W. Bicuculline, pentobarbital and diazepam modulate spontaneous GABA(A) channels in rat hippocampal neurons. Br. J. Pharmacol. 131, 695–704 (2000).

    Article  CAS  Google Scholar 

  34. Chavas, J. & Marty, A. Coexistence of excitatory and inhibitory GABA synapses in the cerebellar interneuron network. J. Neurosci. 23, 2019–2031 (2003).

    Article  CAS  Google Scholar 

  35. Schmitz, D., Mellor, J. & Nicoll, R.A. Presynaptic kainate receptor mediation of frequency facilitation at hippocampal mossy fiber synapses. Science 291, 1972–1976 (2001).

    Article  CAS  Google Scholar 

  36. Stell, B.M., Rostaing, P., Triller, A. & Marty, A. Activation of presynaptic GABA(A) receptors induces glutamate release from parallel fiber synapses. J. Neurosci. 27, 9022–9031 (2007).

    Article  CAS  Google Scholar 

  37. Trigo, F.F., Chat, M. & Marty, A. Enhancement of GABA release through endogenous activation of axonal GABA(A) receptors in juvenile cerebellum. J. Neurosci. 27, 12452–12463 (2007).

    Article  CAS  Google Scholar 

  38. Turecek, R. & Trussell, L.O. Presynaptic glycine receptors enhance transmitter release at a mammalian central synapse. Nature 411, 587–590 (2001).

    Article  CAS  Google Scholar 

  39. Shu, Y., Hasenstaub, A., Duque, A., Yu, Y. & McCormick, D.A. Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nature 441, 761–765 (2006).

    Article  CAS  Google Scholar 

  40. Zhang, S.J. & Jackson, M.B. GABA-activated chloride channels in secretory nerve endings. Science 259, 531–534 (1993).

    Article  CAS  Google Scholar 

  41. Huang, H. & Trussell, L.O. Control of presynaptic function by a persistent Na(+) current. Neuron 60, 975–979 (2008).

    Article  CAS  Google Scholar 

  42. Hori, T. & Takahashi, T. Mechanisms underlying short-term modulation of transmitter release by presynaptic depolarization. J. Physiol. (Lond.) 587, 2987–3000 (2009).

    Article  CAS  Google Scholar 

  43. Awatramani, G.B., Price, G.D. & Trussell, L.O. Modulation of transmitter release by presynaptic resting potential and background calcium levels. Neuron 48, 109–121 (2005).

    Article  CAS  Google Scholar 

  44. Timmerman, W. & Westerink, B.H. Brain microdialysis of GABA and glutamate: what does it signify? Synapse 27, 242–261 (1997).

    Article  CAS  Google Scholar 

  45. Bianchi, L. et al. Investigation on acetylcholine, aspartate, glutamate and GABA extracellular levels from ventral hippocampus during repeated exploratory activity in the rat. Neurochem. Res. 28, 565–573 (2003).

    Article  CAS  Google Scholar 

  46. Maguire, J.L., Stell, B.M., Rafizadeh, M. & Mody, I. Ovarian cycle-linked changes in GABA(A) receptors mediating tonic inhibition alter seizure susceptibility and anxiety. Nat. Neurosci. 8, 797–804 (2005).

    Article  CAS  Google Scholar 

  47. Coulter, D.A. & Carlson, G.C. Functional regulation of the dentate gyrus by GABA-mediated inhibition. Prog. Brain Res. 163, 235–243 (2007).

    Article  CAS  Google Scholar 

  48. Wei, W., Faria, L.C. & Mody, I. Low ethanol concentrations selectively augment the tonic inhibition mediated by delta subunit-containing GABAA receptors in hippocampal neurons. J. Neurosci. 24, 8379–8382 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to P. Jonas and to D. Engel for help in optimizing mossy fiber bouton recordings and to C. Henneberger, M.C. Walker and K. Volynski for comments on the manuscript. This work was supported by the Medical Research Council (UK), the Wellcome Trust, the European Research Council and the Fondation pour la Recherche Médicale (France).

Author information

Authors and Affiliations

Authors

Contributions

A.R., E.C. and R.S.S. conducted the experiments. A.R. and E.C. analyzed the electrophysiology and epifluorescence imaging data. R.S.S. and D.A.R. analyzed the multi-photon imaging data. A.R., R.S.S., D.A.R. and D.M.K. conceived the study. D.M.K. wrote the first draft of the manuscript, which was revised by all of the authors.

Corresponding authors

Correspondence to Arnaud Ruiz or Dimitri M Kullmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 1430 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz, A., Campanac, E., Scott, R. et al. Presynaptic GABAA receptors enhance transmission and LTP induction at hippocampal mossy fiber synapses. Nat Neurosci 13, 431–438 (2010). https://doi.org/10.1038/nn.2512

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2512

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing