Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A chemically driven insulator–metal transition in non-stoichiometric and amorphous gallium oxide

Abstract

Insulator–metal transitions are well known in transition-metal oxides, but inducing an insulator–metal transition in the oxide of a main group element is a major challenge. Here, we report the observation of an insulator–metal transition, with a conductivity jump of seven orders of magnitude, in highly non-stoichiometric, amorphous gallium oxide of approximate composition GaO1.2 at a temperature around 670 K. We demonstrate through experimental studies and density-functional-theory calculations that the conductivity jump takes place at a critical gallium concentration and is induced by crystallization of stoichiometric Ga2O3 within the metastable oxide matrix—in chemical terms by a disproportionation. This novel mechanism—an insulator–metal transition driven by a heterogeneous solid-state reaction—opens up a new route to achieve metallic behaviour in oxides that are expected to exist only as classic insulators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrical conductivity of gallium oxide films prepared by PLD.
Figure 2: Structure of gallium oxide films, Ga0.45O0.55, prepared by PLD in argon atmosphere.
Figure 3: DOS and electron density distribution for gallium oxide with small gallium excess.
Figure 4: Electronic structure of supercells Ga20O24, Ga22O24 and Ga24O24.
Figure 5: In situ optical absorption of a gallium oxide film deposited in nitrogen.
Figure 6: Schematic description of the correlation between geometrical structure, gallium excess, electrical conductivity and band structure of highly non-stoichiometric, amorphous gallium oxide as a function of temperature.

Similar content being viewed by others

References

  1. Kotliar, G. Driving the electron over the edge. Science 302, 67–68 (2003).

    Article  CAS  Google Scholar 

  2. Erwin, S. C. When is a metal not a metal? Nature 441, 295–296 (2006).

    Article  CAS  Google Scholar 

  3. Mott, N. F. The basis of the electron theory of metals, with special reference to the transition metals. Proc. Phys. Soc. Lond. A 62, 416–422 (1949).

    Article  Google Scholar 

  4. Mott, N. F. Metal-Insulator Transition (Taylor & Francis, London, 1974).

    Google Scholar 

  5. McWhan, D. B. & Remeika, J. P. Metal–insulator transition in (V1−xCrx)2O3 . Phys. Rev. B 2, 3734–3750 (1970).

    Article  Google Scholar 

  6. Limelette, P. et al. Universality and critical behavior at the Mott transition. Science 302, 89–92 (2003).

    Article  CAS  Google Scholar 

  7. Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).

    Article  CAS  Google Scholar 

  8. Mott, N. F. Electrons in disordered structures. Adv. Phys. 16, 49–144 (1967).

    Article  CAS  Google Scholar 

  9. Gebhard, F. The Mott Metal–Insulator Transition (Springer, Berlin, 1997).

    Google Scholar 

  10. Husmann, A. et al. Dynamical signature of the Mott–Hubbard transition in Ni(S,Se)2 . Science 274, 1874–1876 (1996).

    Article  CAS  Google Scholar 

  11. Biermann, S., Poteryaev, A. I., Georges, A. & Lichtenstein, A. I. Dynamical singlets and correlation-assisted Peierls transition in VO2 . Phys. Rev. Lett. 94, 026404 (2005).

    Article  CAS  Google Scholar 

  12. Zinkevich, M. & Aldinger, F. Thermodynamic assessment of the gallium–oxygen system. J. Am. Ceram. Soc. 87, 683–691 (2004).

    Article  CAS  Google Scholar 

  13. Tippins, H. H. Optical absorption and photoconductivity in the band edge of β-Ga2O3 . Phys. Rev. 140, A316–A319 (1965).

    Article  Google Scholar 

  14. Binet, L. & Gourier, D. Origin of the blue luminescence of β-Ga2O3 . J. Phys. Chem. Solids 59, 1241–1249 (1998).

    Article  CAS  Google Scholar 

  15. Ogita, M., Higo, K., Nakanishi, Y. & Hatanaka, Y. Ga2O3 thin film for oxygen sensor at high temperature. Appl. Surf. Sci. 175–176, 721–725 (2001).

    Article  Google Scholar 

  16. Orita, M., Ohta, H., Hirano, M. & Hosono, H. Deep-ultraviolet transparent conductive β-Ga2O3 thin films. Appl. Phys. Lett. 77, 4166–4168 (2000).

    Article  CAS  Google Scholar 

  17. Ankudinov, A. L., Ravel, B., Rehr, J. J. & Conradson, S. D. Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure. Phys. Rev. B 58, 7565–7576 (1998).

    Article  CAS  Google Scholar 

  18. Perdew, J. P. et al. Atoms, molecules, solids, and surfaces—applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

    Article  CAS  Google Scholar 

  19. Becke, A. D. Density-functional thermochemistry 3. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  20. Tauc, J. Amorphous and Liquid Semiconductors (Plenum, London, 1974).

    Book  Google Scholar 

  21. Burke, J. Kinetics of Phase Transformations in Metals (Pergamon, Oxford, 1965).

    Google Scholar 

  22. Wuttig, M. & Yamada, N. Phase change materials for rewriteable data storage. Nature Mater. 6, 824–832 (2007).

    Article  CAS  Google Scholar 

  23. De Souza, R. A. & Martin, M. Secondary ion mass spectrometry (SIMS)—a powerful tool for studying mass transport over various length scales. Phys. Status Solidi C 4, 1785–1801 (2007).

    Article  CAS  Google Scholar 

  24. Koningsberger, D. C. & Prins, R. (eds) X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES (Wiley-Interscience, New York, 1988).

  25. Booth, C. H. & Bridges, F. Improved self-absorption correction for extended X-ray absorption fine-structure measurements. Phys. Scr. T 115, 202 (2005).

    Article  Google Scholar 

  26. Kreye, M. & Becker, K. D. An optical in-situ study of the re-oxidation kinetics of mixed valent Yb3Al5O12 . Phys. Chem. Chem. Phys. 5, 2283–2290 (2003).

    Article  CAS  Google Scholar 

  27. Dovesi, R. et al. CRYSTAL06 User’s Manual (Univ. of Torino, Torino, 2006).

    Google Scholar 

  28. Bloch, F. Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Physik 52, 555–600 (1928).

    Article  CAS  Google Scholar 

  29. Slater, J. C. & Koster, G. F. Simplified LCAO method for the periodic potential problem. Phys. Rev. 94, 1498–1524 (1954).

    Article  CAS  Google Scholar 

  30. Pandey, R., Jaffe, J. E. & Harrison, N. E. Ab-initio study of high-pressure phase-transition in GaN. J. Phys. Chem. Solids 55, 1357–1361 (1994).

    Article  CAS  Google Scholar 

  31. Pandey, R., Causa, M., Harrison, N. M. & Seel, M. The high-pressure phase transitions of silicon and gallium nitride: A comparative study of Hartree-Fock and density functional calculations. J. Phys. Condens. Matter 8, 3993–4000 (1996).

    Article  CAS  Google Scholar 

  32. Bredow, T., Jug, K. & Evarestov, R. A. Electronic and magnetic structure of ScMnO3 . Phys. Status Solidi B 243, R10–R12 (2006).

    Article  CAS  Google Scholar 

  33. Gatti, C., Saunders, V. R. & Roetti, C. Crystal-field effects on the topological properties of the electron-density in molecular-crystals—the case of urea. J. Chem. Phys. 101, 10686–10696 (1994).

    Article  CAS  Google Scholar 

  34. Kresse, G. & Furthmuller, J. VASP the guide, <http://cms.mpi.univie.ac.at/vasp/vasp/vasp.html> (2007).

  35. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  36. Kresse, G. & Joubert, J. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  37. Anisimov, V. I., Zaanen, J. & Andersen, O. K. Band theory and Mott insulators - Hubbard-U instead of Stoner-I. Phys. Rev. B 44, 943–954 (1991).

    Article  CAS  Google Scholar 

  38. Goodby, R. W., Schlüter, M. & Sham, L. J. Trends in self-energy operators and their corresponding exchange-correlation potentials. Phys. Rev. B 36, 6497–6500 (1987).

    Article  Google Scholar 

  39. Muscat, J., Wander, A. & Harrison, N. M. On the prediction of band gaps from hybrid functional theory. Chem. Phys. Lett. 342, 397–401 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support by the Deutsche Forschungsgemeinschaft (DFG) within the Priority Program 1136. We thank J. Rodesch for carrying out preliminary measurements; R. Dronskowski for allowing us to use the Quantum Design PPMS; HASYLAB for the provision of beam time and travel funding; E. Welter, W. Calibe, J. Brendt, D. Müller and D. Röhrens for support during the X-ray absorption spectroscopy measurements; and T. Weirich for the TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagarajan, L., De Souza, R., Samuelis, D. et al. A chemically driven insulator–metal transition in non-stoichiometric and amorphous gallium oxide. Nature Mater 7, 391–398 (2008). https://doi.org/10.1038/nmat2164

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2164

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing