Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-29T07:54:08.808Z Has data issue: false hasContentIssue false

The impact of the rotation on the surface brightness of early-type stars

Published online by Cambridge University Press:  23 January 2015

M. Challouf
Affiliation:
Laboratoire Lagrange, UMR7293, UNS/CNRS/OCA, 06300 Nice, France email: mounir.challouf@oca.eu Lab. Dyn. Moléculaire et Matériaux Photoniques, UR11ES03, UT/ESSTT, Tunis, Tunisie
N. Nardetto
Affiliation:
Laboratoire Lagrange, UMR7293, UNS/CNRS/OCA, 06300 Nice, France email: mounir.challouf@oca.eu
A. Domiciano de Souza
Affiliation:
Laboratoire Lagrange, UMR7293, UNS/CNRS/OCA, 06300 Nice, France email: mounir.challouf@oca.eu
D. Mourard
Affiliation:
Laboratoire Lagrange, UMR7293, UNS/CNRS/OCA, 06300 Nice, France email: mounir.challouf@oca.eu
H. Aroui
Affiliation:
Lab. Dyn. Moléculaire et Matériaux Photoniques, UR11ES03, UT/ESSTT, Tunis, Tunisie
P. Stee
Affiliation:
Laboratoire Lagrange, UMR7293, UNS/CNRS/OCA, 06300 Nice, France email: mounir.challouf@oca.eu
A. Meilland
Affiliation:
Laboratoire Lagrange, UMR7293, UNS/CNRS/OCA, 06300 Nice, France email: mounir.challouf@oca.eu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The surface brightness colors (SBC) relation is a very important tool to derive the distance of extragalactic eclipsing binaries. However, for early-type stars, this SBC relation is critically affected by the stellar environment (wind, circumstellar disk, etc...) and/or by the fast rotation. We calculated 6 models based on the code of Domiciano de Souza et al. (2012) considering different inclinations and rotational velocities. Using these results, we quantify for the first time the impact of the rotation on the SBC relation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Di Benedetto, G. P. 2005, MNRAS 357, 174CrossRefGoogle Scholar
Domiciano de Souza, A., Hadjara, M., Vakili, F., et al. 2012, A&A 545, A130Google Scholar
Domiciano de Souza, A., Vakili, F., & Jankov, S. e. a. 2002, A&A 393, 345Google Scholar
Graczyk, D., Soszyński, I., Poleski, R., et al. 2011, AcA 61, 103Google Scholar
Hubeny, I. & Lanz, T. 2011, Synspec, Astrophysics Source Code LibraryGoogle Scholar
Kurucz, R. L. 1979, ApJS 40, 1CrossRefGoogle Scholar
Macri, L. M., Stanek, K. Z., Sasselov, D. D., & et, a. 2001, AJ 121, 870CrossRefGoogle Scholar
Mourard, D., Clausse, J. M., Marcotto, A., et al. 2009, A&A 508, 1073Google Scholar
Pawlak, M., Graczyk, D., Soszyński, I., et al. 2013, AcA 63, 323Google Scholar
Pietrzyński, G., Thompson, I. B., Graczyk, D., et al. 2009, ApJ 697, 862CrossRefGoogle Scholar
von Zeipel, H. 1924, MNRAS 84, 665CrossRefGoogle Scholar
Worthey, G. & Lee, H.-C. 2011, ApJS 193, 1CrossRefGoogle Scholar
Wyrzykowski, L., Udalski, A., Kubiak, M., et al. 2003, AcA 53, 1Google Scholar