Skip to main content

Advertisement

Log in

Effects of Friction Stir Processing on the Phase Transformation and Microstructure of TiO2-Compounded Ti-6Al-4V Alloy

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

With the aim to improve the surface wear resistance properties of Ti-6Al-4V alloy as well as its biocompatibility as implants in human bodies, TiO2 particles are introduced to strengthen the properties of Ti-6Al-4V through the effect of friction stir processing. The effects of friction stir processing on the phase transformation and microstructure of TiO2-compounded Ti-6Al-4V are investigated systematically. Grain refinement in the stirring zone and phase transformation in the matrix material are observed and discussed in detail. The study provides a new insight on the desired properties of Ti-6Al-4V for biomedical applications using friction stir processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig.4

References

  1. Y. Okazaki, S. Rao, Y. Ito, T. Tateishi: Biomaterials, 1998, vol. 19(13), pp. 1197–1215.

    Article  Google Scholar 

  2. E. Eisenbarth, D. Velten, M. Muller, R. Thull, J. Breme: Biomaterials, 2004, vol. 25(26), pp. 5705–13.

    Article  Google Scholar 

  3. C. Leyens, M. Peters: Titanium and titanium alloys, Wiley Online Library, Weinheim, 2003, pp. 105–07.

    Book  Google Scholar 

  4. K.S. Chan, M. Koike, T. Okabe: Acta Biomater., 2007, vol. 3(3), pp. 383–89.

    Article  Google Scholar 

  5. S.H. Teoh: Int. J. Fatigue, 2000, vol. 22(10), pp. 825–37.

    Article  Google Scholar 

  6. J.I. Qazi, H.J. Rack: Mater. Sci. Eng. C, 2006, vol. 26(8), pp. 1269–77.

    Article  Google Scholar 

  7. R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, A.K. Mukherjee: Scripta Mater., 1999, vol. 42(2), pp. 163–68.

    Article  Google Scholar 

  8. Z.Y. Ma, S.R. Sharma, R.S. Mishra, M.W. Mahoney: Mater. Sci. Forum, 2003, vol. 426, pp. 2891–96.

    Article  Google Scholar 

  9. R.S. Mishra, Z.Y. Ma: Mater. Sci. Eng. R, 2005, vol. 50(1–2), pp. 1–78.

    Article  Google Scholar 

  10. A. Shafiei-Zarghani, S.F. Kashani-Bozorg, A. Zarei-Hanzaki: Mater. Sci. Eng. A, 2009, vol. 500(1–2), pp. 84–91.

    Article  Google Scholar 

  11. R.S. Mishra, D. Manisha, J.W. Newkirk: Scripta Mater., 2007, vol. 56(6), pp. 541–4.

    Article  Google Scholar 

  12. A. Kurt, I. Uygur, E. Cete: J. Mater. Process. Technol., 2011, vol.211(3), pp. 313–17.

    Article  Google Scholar 

  13. J. Grotberg, A. Hamlekhan, A. Butt, S. Patel, D. Royhman, T. Shokuhfar, C. Sukotjo, C. Takoudis, M.T. Mathew: Mater. Sci. Eng. C, 2016, vol. 59, pp. 677–89.

    Article  Google Scholar 

  14. J.J. Yin, J. Liu, M. Ehrenshaft, J.E. Roberts, P.P. Fu, R.P. Mason, B. Zhao: Toxicol. Appl. Pharmacol., 2012, vol. 263(1), pp. 81–88.

    Article  Google Scholar 

  15. S.C. Roy, M. Paulose, C.A. Grimes: Biomaterials, 2007, vol. 28(31), pp. 4667–72.

    Article  Google Scholar 

  16. C. Eriksson, J. Lausmaa, H. Nygren: Biomaterials, 2001, vol. 22(14), pp. 1987–96.

    Article  Google Scholar 

  17. B.C. Yang, M. Uchida, H.M. Kim, X.D. Zhang, T. Kokubo: Biomaterials, 2004, vol. 25(6), pp. 1003–10.

    Article  Google Scholar 

  18. T.F. Keller, J. Reichert, T. Tam Pham, R. Adjiski, L. Spiess, L. Berzina-Cimdina, K.D. Jandt, J. Bossert: Acta Biomater., 2013, vol. 9(3), pp. 5810–20.

    Article  Google Scholar 

  19. X.Y. Liu, P.K. Chu, C.X. Ding: Mater. Sci. Eng. R, 2004, vol. 47(3–4), pp. 49–121.

    Article  Google Scholar 

  20. S.B. Goodman: Biomaterials, 2007, vol. 28(34), pp. 5044–48.

    Article  Google Scholar 

  21. V. Sharma, U. Prakash, B.M. Kumar: J. Mater. Process. Technol., 2015, vol. 224, pp. 117–34.

    Article  Google Scholar 

  22. L. Wang, J. Qu, L. Chen, Q. Meng, L.-C. Zhang, J. Qin, D. Zhang, W. Lu: Metall. Trans. A, 2015, vol. 46(11), pp. 4813–18.

    Article  Google Scholar 

  23. Z.Y. Ma, A.L. Pilchak, M.C. Juhas, J.C. Williams: Scr. Mater., 2008, vol. 58(5), pp. 361–66.

    Article  Google Scholar 

  24. B. Li, Y.F. Shen, W.Y. Hu, L. Luo: Surf. Coat. Technol., 2014, vol. 239, pp. 160–70.

    Article  Google Scholar 

  25. X. Zhang, Q. Wang, W. Mo: Physical Metallurgy and Heat Treatment of Titanium, Metallurgical Industry Press, Beijing, 2009, pp. 213–25.

    Google Scholar 

  26. X. Zhang, Y. Zhao, C. Bai: Titanium Alloy and its Application, Chemical Industry Press, Beijing, 2005, pp. 64–68.

    Google Scholar 

  27. H.-J. Liu, Z. Li: Transactions of Nonferrous Metals Society of China, 2010, vol. 20(10), pp. 1873–78.

    Article  Google Scholar 

Download references

This work was supported by the projects of the National Natural Science Foundation of China under Grant Nos. 51302168 and 51674167, Shanghai Pujiang Program (Grant No: 15PJD017), Medical Engineering Cross Research Foundation of Shanghai Jiao Tong University under Grant No. YG2014MS02, and SMC-ChenXing Project Shanghai Jiao Tong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqiang Wang.

Additional information

Zihao Ding and Chengjian Zhang have contributed equally to this work.

Manuscript submitted June 12, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Z., Zhang, C., Xie, L. et al. Effects of Friction Stir Processing on the Phase Transformation and Microstructure of TiO2-Compounded Ti-6Al-4V Alloy. Metall Mater Trans A 47, 5675–5679 (2016). https://doi.org/10.1007/s11661-016-3809-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3809-8

Keywords

Navigation