Skip to main content
Log in

Construction of amperometric glucose biosensor based on in-situ fabricated hierarchical meso-macroporous SiO2 modified Au film electrodes

  • Advanced materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Gold nanoparticles (GNPs) modified hierarchical meso-macroporous (HMMP) SiO2 layer on the surface of Au film electrode was developed as a novel enzyme immobilization matrix for biosensors construction. HMMP SiO2-Au bilayer film electrodes were in-situ fabricated with magnetron sputtering process and templating method. The as-prepared HMMP SiO2 films were characterized by SEM, TEM, and cyclic voltammetry (CV). The modified layer of HMMP SiO2 has interconnected pore channels, and the sizes of macropores and mesopores are about 330 nm and 9 nm, respectively. The HMMP SiO2 modified gold film electrodes not only have no diffusion barrier for electrochemical probes, but also exhibit good electrochemical properties. In addition, the activity and stability of the immobilized enzyme can be commendably retained in HMMP SiO2. The biosensor exhibits an excellent bioelectrocatalytic response to glucose with a linear range of 1.0×10-4 M-1.0×10-2 M, high sensitivity of 18.0 μA·mM-1·cm-2, as well as good reproducibility and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Walcarius A, Kuhn A. Ordered Porous Thin Films in Electrochemical Analysis[J]. TrAC, Trends Anal. Chem., 2008, 7(27): 593–603

    Article  Google Scholar 

  2. Xu Z, Chen X, Dong S. Electrochemical Biosensors based on Advanced Bioimmobilization Matrices[J]. TrAC, Trends Anal. Chem., 2006, 9(25): 899–908

    Article  Google Scholar 

  3. Sun LS, Sun YC, Li CQ. Synthesis and Properties of the Modification of Micro-Crystal LiMn2-x AlxO4 Cathode Material for Li-Ion Batteries[J]. J. Wuhan Univ. Technol., 2012, 1(27): 79–81

    Article  Google Scholar 

  4. Willner I, Katz E. Integration of Layered Redox Proteins and Conductive Supports for Bioelectronic Applications[J]. Angew. Chem. Int. Ed., 2000, 7(39): 1180–1218

    Article  Google Scholar 

  5. Hedenmo M, Narváez A, Domínguez E, et al. Improved Mediated Tyrosinase Amperometric Enzyme Electrodes[J]. J. Electroanal. Chem., 1997, 1(425): 1–11

    Article  Google Scholar 

  6. Li JW, Liu Y, Tang M, et al. Capacitive Humidity Sensor with a Coplanar Electrode Structure Based on Anodised Porous Alumina Film[J]. Micro Nano Lett., 2012, 11(7): 1097–1100

    Article  Google Scholar 

  7. Yang F, Jiang XL, Zhou AJ, et al. Research on Preparation of Ordered Porous SiO2 Microspheres with Colloidal Crystals Template[J]. J. Wuhan Univ. Technol., 2009, 31(10): 6–9

    Google Scholar 

  8. Fan J, Lei J, Wang L, et al. Rapid and High-capacity Immobilization of Enzymes based on Mesoporous Silicas with Controlled morphologies[J]. Chem. Commun., 2003, 17: 2140–2141

    Article  Google Scholar 

  9. Cao XD, Sun YX, Ye YK, et al. Macroporous Ordered Silica foam for Glucose Oxidase Immobilisation and Direct Electrochemical Biosensing[J]. Anal. Methods, 2014, 5(6): 1448–1454

    Article  Google Scholar 

  10. Walcarius A. Mesoporous Materials and Electrochemistry[J]. Chem. Soc. Rev., 2013, 9(42): 4098–4140

    Article  Google Scholar 

  11. Yuan ZY, Su BL. Insights into Hierarchically Meso-macroporous Structured Materials[J]. J. Mater. Chem., 2006, 7(16): 663–677

    Article  Google Scholar 

  12. Bharathi S, Nogami M. A glucose Biosensor Based on Electrodeposited Biocomposites of Gold Nanoparticles and Glucose Oxidase Enzyme[J]. Analyst, 2001, 11(126): 1919–1922

    Article  Google Scholar 

  13. Bai LJ, Yan B, Chai YQ, et al. An Electrochemical Aptasensor for Thrombin Detection Based on Direct Electrochemistry of Glucose Oxidase Using a Functionalized Graphene Hybrid for Amplification[J]. Analyst, 2013, 21(138): 6595–6599

    Article  Google Scholar 

  14. Holland BT, Blanford CF, Do T, et al. Synthesis of Highly Ordered, Three-dimensional, Macroporous Structures of Amorphous or Crystalline Inorganic Oxides, Phosphates, and Hybrid Composites[J]. Chem. Mater., 1999, 3(11): 795–805

    Article  Google Scholar 

  15. Li Y, Kunitake T, Fujikawa S. Efficient Fabrication of Large, Robust Films of 3D-ordered Polystyrene Latex[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2006, 1–3(275): 209–217

    Article  Google Scholar 

  16. Goncales VR, Massafera MP, Benedetti TM, et al. Nanostructured Thin Films Obtained by Electrodeposition Over a Colloidal Crystal Template: Applications in Electrochemical Devices[J]. J. Braz. Chem. Soc, 2009, 4(20): 663–673

    Article  Google Scholar 

  17. Luo Q, Li L, Yang B, et al. Three-dimensional Ordered Macroporous Structures with Mesoporous Silica Walls[J]. Chem. Lett., 2000, 4(29): 378–379

    Article  Google Scholar 

  18. Cheng Y, Teh L, Tay Y, et al. Coating Process of ZnO Thin Film on Macroporous Silica Periodic Array[J]. Thin Solid Films, 2006, 1–2(504): 41–44

    Article  Google Scholar 

  19. Frens G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions[J]. Nature, 1973, 105(241): 20–22

    Google Scholar 

  20. Ozin GA, Yang S. The Race for the Photonic Chip: Colloidal Crystal Assembly in Silicon Wafers[J]. Adv. Funct. Mater., 2001, 2(11): 95–104

    Article  Google Scholar 

  21. Cass AE, Davis G, Francis GD, et al. Ferrocene-mediated Enzyme Electrode for Amperometric Determination of Glucose[J]. Anal. Chem., 1984, 4(56): 667–671

    Article  Google Scholar 

  22. Liu S, Ju H. Reagentless Glucose Biosensor based on Direct Electron Transfer of Glucose Oxidase Immobilized on Colloidal Gold Modified Carbon Paste Electrode[J]. Biosens. Bioelectron., 2003, 3(19): 177–183

    Article  Google Scholar 

  23. Libertino S, Aiello V, Scandurra A, et al. Immobilization of the Enzyme Glucose Oxidase on Both Bulk and Porous SiO2 Surfaces[J]. Sensors, 2008, 9(8): 5637–5648

    Article  Google Scholar 

  24. Zhang S, Wang N, Yu H, et al. Covalent Attachment of Glucose Oxidase to an Au Electrode Modified with Gold Nanoparticles for Use as Glucose Biosensor[J]. Bioelectrochemistry, 2005, 1(67): 15–22

    Article  Google Scholar 

  25. Shu F, Wilson G. Rotating Ring-disk Enzyme Electrode for Surface Catalysis Studies[J]. Anal. Chem., 1976, 12(48): 1679–1686

    Article  Google Scholar 

  26. Wang B, Li B, Deng Q, et al. Amperometric Glucose Biosensor based on Sol-gel Organic-inorganic Hybrid Material[J]. Anal. Chem., 1998, 15(70): 3170–3174

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Tang  (唐敏).

Additional information

Funded by the Natural Science Foundation of Jiangshu Province (No. BK200137) and National Natural Science Foundation of China (No. 21075001)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, M., Lin, X., Li, M. et al. Construction of amperometric glucose biosensor based on in-situ fabricated hierarchical meso-macroporous SiO2 modified Au film electrodes. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 31, 736–742 (2016). https://doi.org/10.1007/s11595-016-1439-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-016-1439-z

Key words

Navigation