Skip to main content

Advertisement

Log in

Origin and spatial distribution of metals in urban soils

  • Phytoremediation of Polluted Soils: Recent Progress and Developments
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

This study assessed soils from 36 parks and gardens (Vigo City, NW of Spain) where there are different degrees of traffic intensity and activity.

Materials and methods

The soils were characterised, and the content of Ba, Ca, Cr, Cu, Fe, Mg, Mn, Na, Ni, Pb, Si, Sr and Zn was analysed. Further assessment determined the geoaccumulation index, enrichment factor and the contamination degree by metals with adverse effects on human health and environmental quality.

Results and discussion

The results reveal the existence of a moderate degree of contamination by Ba, Pb and Cu, which contribute the most to soil contamination due to the influence of industrial areas and main transport routes. Correlation and cluster analyses suggest that the metals included in the study have three possible origins: “natural” (Na and Si), “mixed” (two groups with different source intensity: Ca and Sr and Cr, Fe, Mg, Mn and Ni) and two possible “urban” sources: traffic (Cu, Pb, Zn) and mixed (Ba).

Conclusions

None of the soils can be classified as strongly contaminated but more than 61 % of the moderate contamination degree determined in the studied soils is explained by the Ba, Cu and Pb contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acevedo-Figueroa D, Jiménez BD, Rodríguez-Sierra CJ (2006) Trace metals in sediments of two estuarine lagoons from Puerto Rico. Environ Pollut 141:336–342

    Article  CAS  Google Scholar 

  • Ajmone-Marsan F, Biasioli M (2010) Trace elements in soils of urban areas. Water Air Soil Pollut 213:121–143

    Article  CAS  Google Scholar 

  • Azpurua MA, Ramos KD (2010) A comparison of spatial interpolation methods for estimation of average electromagnetic field magnitude. Prog Electromagn Res M 14:135–145

    Article  Google Scholar 

  • Biasioli M, Barberis R, Ajmone-Marsan A (2006) The influence of a large city on some soil properties and metals content. Sci Total Environ 356:154–164

    Article  CAS  Google Scholar 

  • Biasioli M, Grcman H, Kralj T, Madrid F, Díaz-Barrientos E, Ajmone-Marsan F (2007) Potentially toxic elements contamination in urban soils: a comparison of three European cities. J Environ Qual 36:70–79

    Article  CAS  Google Scholar 

  • Bremner JM, Mulvaney CS (1982) Nitrogen-total. In: Page AL, Miller RH, Keeney RS (eds) Method of soil analysis: part 2. Chemical and microbiological properties, vol Agronomy monographs no. 9, 2nd edn. American Society of Agronomy and Soil Science Society of America, Madison, pp 595–624)

    Google Scholar 

  • Buat-Menard P, Chesselet R (1979) Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth Planet Sci Lett 42:399–411

    Article  CAS  Google Scholar 

  • Cal-Prieto MJ, Carlosena A, Andrade JM, Martínez ML, Muniategui S, López-Mahía P, Prada D (2001) Antimony as a tracer of the anthropogenic influence on soils and estuarine sediments. Water, Air, and Soil Pollut 129:333–348

    Article  CAS  Google Scholar 

  • Carr R, Zhang C, Moles N, Harder M (2008) Identification and mapping of heavy metal pollution in soils of a sports ground in Galway City, Ireland, using a portable XRF analyser and GIS. Environ Geochem Health 30:45–52

    Article  CAS  Google Scholar 

  • Chen H, Lu X, Li LY, Gao T, Chang Y (2014) Metal contamination in campus dust of Xi’an, China: a study based on multivariate statistics and spatial distribution. Sci Total Environ 484:27–35

    Article  CAS  Google Scholar 

  • Craul PJ (1992) Urban soil in landscape design. Wiley, New York, 396 p

    Google Scholar 

  • Covelli S, Fontolan G (1997) Application of a normalization procedure in determining regional geochemical baselines. Environ Geol 30:34–45

    Article  CAS  Google Scholar 

  • Golubiewski NE (2006) Urbanization increases grassland carbon pools: effects of landscaping in Colorado’s Front Range. Ecol Appl 16:555–71

    Article  Google Scholar 

  • Daskalakis KD, O’Connor TP (1995) Normalization and elemental sediment contamination in the coastal United States. Environ Sci Technol 29(2):470–477

    Article  CAS  Google Scholar 

  • De Kimpe CR, Morel JL (2000) Urban soil management: a growing concern. Soil Sci 165:31–40

    Article  Google Scholar 

  • De Miguel E, Llamas JF, Chacón E, Berg T, Larssen S, Røyset O, Vadset M (1997) Origin and patterns of distribution of trace elements in street dust: unleaded petrol and urban lead. Atmos Environ 31:2733–2740

    Article  Google Scholar 

  • De Miguel E, Iribarren I, Chacón E, Ordoñez A, Charlesworth S (2007) Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere 66:505–513

    Article  Google Scholar 

  • Eriksson CP, Holmgren P (1996) Estimating stone and boulder contents in forest soils—evaluating the potential of surface penetration methods. Catena 28:121–134

    Article  CAS  Google Scholar 

  • Fernández–Espinosa AJ, Ternero-Rodríguez M (2004) Study of traffic pollution by metals in Seville (Spain) by physical and chemical speciation methods. Anal Bioanal Chem 379:684–699

    Google Scholar 

  • Gallego JLR, Ordóñez A, Loredo J (2002) Investigation of trace element sources from an industrialized area (Avilés, northern Spain) using multivariate statistical methods. Environ Int 27:589–596

    Article  CAS  Google Scholar 

  • Guillén MT, Delgado J, Albanese S, Nieto LA, De Vivo B (2012) Heavy metals fractionation and multivariate statistical techniques to evaluate the environmental risk in soils of Huelva Township (SW Iberian Peninsula). J Geochem Explor 119–120:32–43

    Article  Google Scholar 

  • Hakanson L (1980) An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res 14:975–1001

    Article  Google Scholar 

  • Hendershot WH, Duquette M (1986) A simple barium chloride method for determining cation exchange capacity and exchangeable cations. Soil Sci Soc Am J 50:605–608

    Article  Google Scholar 

  • Instituto Geográfico Nacional de España. (2014). Base Cartográfica Numérica 1:25.000 (BCN25), Base Topográfica Nacional 1:25.000 (BTN25). Cedido por © Instituto Geográfico Nacional de España. https://www.cnig.es/ Accessed 04 April 2014

  • Kabata-Pendias A (2010) Trace elements in soils and plants, 4th edn. CRC, New York

    Book  Google Scholar 

  • Karim Z, Qureshi BA, Mumtaz M, Qureshi S (2014) Heavy metal content in urban soils as an indicator of anthropogenic and natural influences on landscape of Karachi—a multivariate spatio-temporal analysis. Ecol Indic 42:20–31

    Article  CAS  Google Scholar 

  • Lee CS-L, Li X, Shi W, Cheung SC-N, Thornton I (2006) Metal contamination in urban, suburban, and country park soils of Hong Kong: a study based on GIS and multivariate statistics. Sci Total Environ 356:45–61

    Article  CAS  Google Scholar 

  • Li Z-G, Zhang G-S, Liu Y, Wan K-Y, Zhang R-H, Chen F (2013) Soil nutrient assessment for urban ecosystems in Hubei, China. PLoS One 8(9):e75856

    Article  CAS  Google Scholar 

  • Lorenz K, Lal R (2008) Biogeochemical C and N cycles in urban soils. Environ Int 35:1–8

    Article  Google Scholar 

  • Loska K, Wiechulla D, Korus I (2004) Metal contamination of farming soils affected by industry. Environ Int 30:159–165

    Article  CAS  Google Scholar 

  • Macías F, Calvo de Anta R (2009) Niveles Genéricos de Referencia de Metales Pesados y otros elementos de traza en suelos de Galicia. Xunta de Galicia 2009. Santiago de Compostela, Spain (in Spanish)

  • Massas I, Kalivas D, Ehaliotis C, Gasparatos D (2013) Total and available heavy metal concentrations in soils of the Thriassio plain (Greece) and assessment of soil pollution indexes. Environ Monit Assess 185:6751–6766

    Article  CAS  Google Scholar 

  • Metreveli G, Frimmel FH (2007) Influence of Na-bentonite colloids on the transport of heavy metals in porous media. In: Frimmel FH, Frank F, Hans-Curt F (eds) Colloid transport in porous media. Springer, Berlin, pp 29–53

    Chapter  Google Scholar 

  • Minguillón MC, Cirach M, Hoek G, Brunekreef B, Tsai M, de Hoogh K et al (2014) Spatial variability of trace elements and sources for improved exposure assessment in Barcelona. Atmos Environ 89:268–281

    Article  Google Scholar 

  • Monaci F, Bargagli R (1997) Barium and other trace metals as indicators of vehicle emissions. Water Air Soil Pollut 100:89–98

    Article  CAS  Google Scholar 

  • Müller G (1979) Schwermetalle in den sedimenten des Rheins-Veränderungen seit 1971. Umschau 79(24):778–783 (in German)

    Google Scholar 

  • Oliva SR, Fernández-Espinosa AJ (2007) Monitoring of heavy metals in topsoils, atmospheric particles and plant leaves to identify possible contamination sources. Microchem J 86:131–139

    Article  Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL, Miller RH, Keeney RS (eds) Method of soil analysis: part 2. Chemical and microbiological properties. Agronomy monographs no. 9, 2nd edn. American Society of Agronomy and Soil Science Society of America, Madison, pp 403–430

    Google Scholar 

  • Picket STA, Cadenasso ML, Grove JM, Nilon CH, Boone CG, Groffman PM et al (2011) Urban ecological systems: scientific foundations and a decade of progress. J Environ Manage 92:331–362

    Article  Google Scholar 

  • Pouyat RV, Yesilonis ID, Russell-Anelli J, Neerchal NK (2007) Soil chemical and physical properties that differentiate urban land-use and cover types. Soil Sci Soc Am J 71:1010–1019

    Article  CAS  Google Scholar 

  • Puskás I, Farsang A (2009) Diagnostic indicators for characterizing urban soils of Szeged, Hungary. Geoderma 148:267–281

    Article  Google Scholar 

  • QGIS Development Team (2014) QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org Accessed 22 January 2014

  • R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org Accessed 21 January 2014

  • Rodríguez-Salazar MT, Morton-Bermea O, Hernández-Álvarez E, Lozano R, Tapia-Cruz V (2011) The study of metal contamination in urban topsoils of Mexico City using GIS. Environ Earth Sci 62:899–905

    Article  Google Scholar 

  • Rodríguez-Seijo A, Arenas-Lago AML, Vega FA (2015) Identifying sources of Pb pollution in urban soils by means of MC-ICP-MS and TOF-SIMS. Environ Sci Pollut Res 22:7859–7872

    Article  Google Scholar 

  • Ruiz-Cortés E, Reinoso R, Díaz-Barrientos E, Madrid L (2005) Concentrations of potentially toxic metals in urban soils of Seville: relationship with different land uses. Environ Geochem Health 27:465–474

    Article  Google Scholar 

  • Rydin Y, Bleahu A, Davies M, Dávila JD, Friel S, De Grandis G et al (2012) Shaping cities for health: complexity and the planning of urban environments in the 21st century. Lancet 379:2079–2108

    Article  Google Scholar 

  • Saeedi M, Li LY, Salmanzaeh M (2012) Heavy metals and polycyclic aromatic hydrocarbons: pollution and ecological risk assessment in street dust of Tehran. J Hazard Mater 227–228:9–17

    Article  Google Scholar 

  • Santacatalina M, Yubero M, Mantilla E, Carratalá A (2012) Relevance of the economic crisis in chemical PM10 changes in a semi-arid industrial environment. Environ Monit Assess 184:6827–6844

    Article  CAS  Google Scholar 

  • Shi G, Chen Z, Xu S, Zhang J, Wang L, Bi C, Teng J (2008) Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environ Pollut 156(2):251–260

    Article  CAS  Google Scholar 

  • Slavik R, Julinová M, Labudíková M (2012) Screening of the spatial distribution of risk metals in topsoil from an industrial complex. Ecol Chem Eng S 19:259–272

    CAS  Google Scholar 

  • Srinivasa Gowd S, Ramakrishna Reddy M, Govil PK (2010) Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India. J Hazard Mater 174:113–121

    Article  CAS  Google Scholar 

  • Sutherland RA (2000) Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ Geol 39:611–627

    Article  CAS  Google Scholar 

  • Szolnoki Z, Farsang A, Puskás I (2013) Cumulative impacts of human activities on urban garden soils: origin and accumulation of metals. Environ Pollut 177:106–115

    Article  CAS  Google Scholar 

  • Walkey A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 34:29–38

    Article  Google Scholar 

  • Xia X, Zhao X, Lai Y, Dong H (2013) Levels and distribution of total nitrogen and total phosphorous in urban soils of Beijing, China. Environ Earth Sci 69:1571–1577

    Article  CAS  Google Scholar 

  • Yang L, Li Y, Peng K, Wu S (2014) Nutrients and heavy metals in urban soils under different green space types in Anji, China. Catena 115:39–46

    Article  CAS  Google Scholar 

  • Wei B, Jiang F, Li X, Mu S (2010) Heavy metal induced ecological risk in the city of Urumqi, NW China. Environ Monit Assess 160:33–45

    Article  CAS  Google Scholar 

  • Zechmeister HG, Hohenwallner D, Riss A, Hanus-Illnar A (2005) Estimation of element deposition derived from road traffic sources by using mosses. Environ Pollut 138:238–249

    Article  CAS  Google Scholar 

  • Zhang C (2006) Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland. Environ Pollut 142:501–511

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Xunta de Galicia for funding project EM2013/018. F.A. Vega is hired under a Ramón y Cajal contract at the University of Vigo. A. Rodríguez-Seijo would like to thank the University of Vigo for his pre-doctoral fellowship (P.P. 00VI 131H 64102) and would like to thank the Concello de Vigo (Spain) for their help in collecting samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Luisa Andrade.

Ethics declarations

This research does not contain any studies with human or animal subjects. Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Responsible editor: Maria Manuela Abreu

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 389 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Seijo, A., Andrade, M.L. & Vega, F.A. Origin and spatial distribution of metals in urban soils. J Soils Sediments 17, 1514–1526 (2017). https://doi.org/10.1007/s11368-015-1304-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-015-1304-2

Keywords

Navigation