Skip to main content
Log in

The dynamics of the G protein-coupled neuropeptide Y2 receptor in monounsaturated membranes investigated by solid-state NMR spectroscopy

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

In contrast to the static snapshots provided by protein crystallography, G protein-coupled receptors constitute a group of proteins with highly dynamic properties, which are required in the receptors’ function as signaling molecule. Here, the human neuropeptide Y2 receptor was reconstituted into a model membrane composed of monounsaturated phospholipids and solid-state NMR was used to characterize its dynamics. Qualitative static 15N NMR spectra and quantitative determination of 1H–13C order parameters through measurement of the 1H–13C dipolar couplings of the CH, CH2 and CH3 groups revealed axially symmetric motions of the whole molecule in the membrane and molecular fluctuations of varying amplitude from all molecular segments. The molecular order parameters (Sbackbone = 0.59–0.67, SCH2 = 0.41–0.51 and SCH3 = 0.22) obtained in directly polarized 13C NMR experiments demonstrate that the Y2 receptor is highly mobile in the native-like membrane. Interestingly, according to these results the receptor was found to be slightly more rigid in the membranes formed by the monounsaturated phospholipids than by saturated phospholipids as investigated previously. This could be caused by an increased chain length of the monounsaturated lipids, which may result in a higher helical content of the receptor. Furthermore, the incorporation of cholesterol, phosphatidylethanolamine, or negatively charged phosphatidylserine into the membrane did not have a significant influence on the molecular mobility of the Y2 receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barré P, Yamaguchi S, Saito H, Huster D (2003a) Backbone dynamics of bacteriorhodopsin as studied by 13C solid-state NMR spectroscopy. Eur Biophys J 32:578–584

    Article  Google Scholar 

  • Barré P, Zschörnig O, Arnold K, Huster D (2003b) Structural and dynamical changes of the bindin B18 peptide upon binding to lipid membranes. A solid-state NMR study. Biochemistry 42:8377–8386

    Article  Google Scholar 

  • Bennett AE, Rienstra CM, Auger M, Lakshmi KV, Griffin RG (1995) Heteronuclear decoupling in rotating solids. J Chem Phys 103:6951–6958

    Article  ADS  Google Scholar 

  • Berger C, Montag C, Berndt S, Huster D (2011) Optimization of Escherichia coli cultivation methods for high yield neuropeptide Y receptor type 2 production. Protein Expr Purif 76:25–35

    Article  Google Scholar 

  • Bielecki A, Kolbert AC, Levitt MH (1989) Frequency-switched pulse sequences: homonuclear decoupling and dilute spin NMR in solids. Chem Phys Lett 155:341–345

    Article  ADS  Google Scholar 

  • Bosse M, Thomas L, Hassert R, Beck-Sickinger AG, Huster D, Schmidt P (2011) Assessment of a fully active class A G protein-coupled receptor isolated from in vitro folding. Biochemistry 50:9817–9825

    Article  Google Scholar 

  • Botelho AV, Huber T, Sakmar TP, Brown MF (2006) Curvature and hydrophobic forces drive oligomerization and modulate activity of rhodopsin in membranes. Biophys J 91:4464–4477

    Article  Google Scholar 

  • Cabrele C, Beck-Sickinger AG (2000) Molecular characterization of the ligand-receptor interaction of the neuropeptide Y family. J Pharm Sci 6:97–122

    Google Scholar 

  • Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta(2)-adrenergic G protein-coupled receptor. Science 318:1258–1265

    Article  ADS  Google Scholar 

  • Chill JH, Naider F (2011) A solution NMR view of protein dynamics in the biological membrane. Curr Opin Struct Biol 21:627–633

    Article  Google Scholar 

  • Chung KY, Kim TH, Manglik A, Alvares R, Kobilka BK, Prosser RS (2012) Role of detergents in conformational exchange of a G protein-coupled receptor. J Biol Chem 287:36305–36311

    Article  Google Scholar 

  • Columbus L, Hubbell WL (2002) A new spin on protein dynamics. Trends Biochem Sci 27:288–295

    Article  Google Scholar 

  • De Angelis AA, Opella SJ (2007) Bicelle samples for solid-state NMR of membrane proteins. Nat Protoc 2:2332–2338

    Article  Google Scholar 

  • De Paepe G, Lesage A, Emsley L (2003) The performance of phase modulated heteronuclear dipolar decoupling schemes in fast magic-angle-spinning nuclear magnetic resonance experiments. J Chem Phys 119:4833–4841

    Article  ADS  Google Scholar 

  • Ding X, Zhao X, Watts A (2013) G-protein-coupled receptor structure, ligand binding and activation as studied by solid-state NMR spectroscopy. Biochem J 450:443–457

    Article  Google Scholar 

  • Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and motions of proteins. Science 254:1598–1603

    Article  ADS  Google Scholar 

  • Goncalves JA, Ahuja S, Erfani S, Eilers M, Smith SO (2010) Structure and function of G protein-coupled receptors using NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 57:159–180

    Article  Google Scholar 

  • Good DB, Wang S, Ward ME, Struppe J, Brown LS, Lewandowski JR, Ladizhansky V (2014) Conformational dynamics of a seven transmembrane helical protein Anabaena Sensory Rhodopsin probed by solid-state NMR. J Am Chem Soc 136:2833–2842

    Article  Google Scholar 

  • Henzler-Wildman K, Kern D (2007) Dynamic personalities of proteins. Nature 450:964–972

    Article  ADS  Google Scholar 

  • Hong M, Zhang Y, Hu F (2012) Membrane protein structure and dynamics from NMR spectroscopy. Annu Rev Phys Chem 63:1–24

    Article  ADS  Google Scholar 

  • Hubbell WL, Altenbach C, Hubbell CM, Khorana HG (2003) Rhodopsin structure, dynamics, and activation: a perspective from crystallography, site-directed spin labeling, sulfhydryl reactivity, and disulfide cross-linking. Adv Protein Chem 63:243–290

    Article  Google Scholar 

  • Huster D (2005) Investigations of the structure and dynamics of membrane-associated peptides by magic angle spinning NMR. Prog Nucl Magn Reson Spectrosc 46:79–107

    Article  Google Scholar 

  • Huster D (2014) Solid-state NMR spectroscopy to study protein-lipid interactions. Biochim Biophys Acta 1841:1146–1160

    Article  Google Scholar 

  • Huster D, Arnold K, Gawrisch K (1998) Influence of docosahexaenoic acid and cholesterol on lateral lipid organization in phospholipid membranes. Biochemistry 37:17299–17308

    Article  Google Scholar 

  • Huster D, Arnold K, Gawrisch K (2000) Strength of Ca2+ binding to retinal lipid membranes: consequences for lipid organization. Biophys J 78:3011–3018

    Article  Google Scholar 

  • Huster D, Xiao L, Hong M (2001) Solid-state NMR investigation of the dynamics of soluble and membrane-bound colicin Ia channel-forming domain. Biochemistry 40:7662–7674

    Article  Google Scholar 

  • Kim TH, Chung KY, Manglik A, Hansen AL, Dror RO, Mildorf TJ, Shaw DE, Kobilka BK, Prosser RS (2013) The role of ligands on the equilibria between functional states of a G protein-coupled receptor. J Am Chem Soc 135:9465–9474

    Article  Google Scholar 

  • Kobilka B (2013) The structural basis of G-protein-coupled receptor signaling. Angew Chem Int Ed Engl 52:6380–6388

    Article  Google Scholar 

  • Kolodziejski W, Klinowski J (2002) Kinetics of cross-polarization in solid-state NMR: a guide for chemists. Chem Rev 102:613–628

    Article  Google Scholar 

  • Liang B, Arora A, Tamm LK (2010) Fast-time scale dynamics of outer membrane protein A by extended model-free analysis of NMR relaxation data. Biochim Biophys Acta 1798:68–76

    Article  Google Scholar 

  • Morcombe CR, Zilm KW (2003) Chemical shift referencing in MAS solid state NMR. J Magn Reson 162:479–486

    Article  ADS  Google Scholar 

  • Munowitz MG, Griffin RG, Bodenhausen G, Huang TH (1981) Two-dimensional rotational spin-echo nuclear magnetic resonance in solids: correlation of chemical shift and dipolar interactions. J Am Chem Soc 103:2529–2533

    Article  Google Scholar 

  • Nygaard R, Zou Y, Dror RO, Mildorf TJ, Arlow DH, Manglik A, Pan AC, Liu CW, Fung JJ, Bokoch MP, Thian FS, Kobilka TS, Shaw DE, Mueller L, Prosser RS, Kobilka BK (2013) The dynamic process of beta(2)-adrenergic receptor activation. Cell 152:532–542

    Article  Google Scholar 

  • Oates J, Faust B, Attrill H, Harding P, Orwick M, Watts A (2012) The role of cholesterol on the activity and stability of neurotensin receptor 1. Biochim Biophys Acta 1818:2228–2233

    Article  Google Scholar 

  • Opella SJ (1986) Protein dynamics by solid state nuclear magnetic resonance. Methods Enzymol 131:327–361

    Article  Google Scholar 

  • Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le TI, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745

    Article  ADS  Google Scholar 

  • Palmer AG III, Williams J, McDermott A (1996) Nuclear magnetic resonance studies of biopolymer dynamics. J Phys Chem 100:13293–13310

    Article  Google Scholar 

  • Park SH, Casagrande F, Das BB, Albrecht L, Chu M, Opella SJ (2011) Local and global dynamics of the G protein-coupled receptor CXCR1. Biochemistry 50:2371–2380

    Article  Google Scholar 

  • Park SH, Das BB, Casagrande F, Tian Y, Nothnagel HJ, Chu M, Kiefer H, Maier K, De Angelis AA, Marassi FM, Opella SJ (2012) Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491:779–783

    Article  ADS  Google Scholar 

  • Pester O, Barrett PJ, Hornburg D, Hornburg P, Probstle R, Widmaier S, Kutzner C, Durrbaum M, Kapurniotu A, Sanders CR, Scharnagl C, Langosch D (2013) The backbone dynamics of the amyloid precursor protein transmembrane helix provides a rationale for the sequential cleavage mechanism of gamma-secretase. J Am Chem Soc 135:1317–1329

    Article  Google Scholar 

  • Prasanna X, Chattopadhyay A, Sengupta D (2014) Cholesterol modulates the dimer interface of the beta(2)-adrenergic receptor via cholesterol occupancy sites. Biophys J 106:1290–1300

    Article  Google Scholar 

  • Reichert D (2005) NMR studies of dynamic processes in organic solids. Ann Rep NMR Spectrosc 55:159–203

    Article  Google Scholar 

  • Reichert D, Zinkevich T, Saalwachter K, Krushelnitsky A (2012) The relation of the X-ray B-factor to protein dynamics: insights from recent dynamic solid-state NMR data. J Biomol Struct Dyn 30:617–627

    Article  Google Scholar 

  • Rudolph R, Lilie H (1996) In vitro folding of inclusion body proteins. FASEB J 10:49–56

    Google Scholar 

  • Scheidt HA, Meyer T, Nikolaus J, Baek DJ, Haralampiev I, Thomas L, Bittman R, Herrmann A, Müller P, Huster D (2013) Cholesterol’s aliphatic side chain structure modulates membrane properties. Angew Chem Int Ed 52:12848–12851

    Article  Google Scholar 

  • Schmidt P, Lindner D, Montag C, Berndt S, Beck-Sickinger AG, Rudolph R, Huster D (2009) Prokaryotic expression, in vitro folding, and molecular pharmacological characterization of the neuropeptide Y receptor type 2. Biotechnol Prog 25:1732–1739

    Google Scholar 

  • Schmidt P, Berger C, Scheidt HA, Berndt S, Bunge A, Beck-Sickinger AG, Huster D (2010) A reconstitution protocol for the in vitro folded human G protein-coupled Y2 receptor into lipid environment. Biophys Chem 150:29–36

    Article  Google Scholar 

  • Schmidt P, Thomas L, Müller P, Scheidt HA, Huster D (2014) The G protein-coupled neuropeptide Y receptor type 2 is highly dynamic in lipid membranes as revealed by solid-state NMR spectroscopy. Chemistry 20:4986–4992

    Article  Google Scholar 

  • Schmidt-Rohr K, Spiess HW (1994) Multidimensional solid-state NMR and polymers. Academic Press, San Diego 478 pp

    Google Scholar 

  • Son WS, Park SH, Nothnagel HJ, Lu GJ, Wang Y, Zhang H, Cook GA, Howell SC, Opella SJ (2012) q-Titration of long-chain and short-chain lipids differentiates between structured and mobile residues of membrane proteins studied in bicelles by solution NMR spectroscopy. J Magn Reson 214:111–118

    Article  ADS  Google Scholar 

  • Soubias O, Gawrisch K (2012) The role of the lipid matrix for structure and function of the GPCR rhodopsin. Biochim Biophys Acta 1818:234–240

    Article  Google Scholar 

  • Soubias O, Teague WE, Gawrisch K (2006) Evidence for specificity in lipid-rhodopsin interactions. J Biol Chem 281:33233–33241

    Article  Google Scholar 

  • Soubias O, Niu SL, Mitchell DC, Gawrisch K (2008) Lipid-rhodopsin hydrophobic mismatch alters rhodopsin helical content. J Am Chem Soc 130:12465–12471

    Article  Google Scholar 

  • Steyaert J, Kobilka BK (2011) Nanobody stabilization of G protein-coupled receptor conformational states. Curr Opin Struct Biol 21:567–572

    Article  Google Scholar 

  • Teague WE, Soubias O, Petrache H, Fuller N, Hines KG, Rand RP, Gawrisch K (2013) Elastic properties of polyunsaturated phosphatidylethanolamines influence rhodopsin function. Faraday Discuss 161:383–395

    Article  ADS  Google Scholar 

  • Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM (2013) Molecular signatures of G-protein-coupled receptors. Nature 494:185–194

    Article  ADS  Google Scholar 

  • Vogel A, Reuther G, Weise K, Triola G, Nikolaus J, Tan KT, Nowak C, Herrmann A, Waldmann H, Winter R, Huster D (2009) The lipid modifications of Ras that sense membrane environments and induce local enrichment. Angew Chem Int Ed 48:8784–8787

    Article  Google Scholar 

  • Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AGW, Tate CG, Schertler GFX (2008) Structure of a beta(1)-adrenergic G-protein-coupled receptor. Nature 454:486–491

    Article  ADS  Google Scholar 

  • Warne T, Moukhametzianov R, Baker JG, Nehme R, Edwards PC, Leslie AG, Schertler GF, Tate CG (2011) The structural basis for agonist and partial agonist action on a beta(1)-adrenergic receptor. Nature 469:241–244

    Article  ADS  Google Scholar 

  • Wimley WC, White SH (1996) Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat Struct Biol 3:842–848

    Article  Google Scholar 

  • Witte K, Kaiser A, Schmidt P, Splith V, Thomas L, Berndt S, Huster D, Beck-Sickinger AG (2013) Oxidative in vitro folding of a cysteine deficient variant of the G protein-coupled neuropeptide Y receptor type 2 improves stability at high concentration. Biol Chem 394:1045–1056

    Article  Google Scholar 

  • Yao Y, Ding Y, Tian Y, Opella SJ, Marassi FM (2013) Membrane protein structure determination: back to the membrane. Methods Mol Biol 1063:145–158

    Article  Google Scholar 

Download references

Acknowledgments

D. H. would like to acknowledge valuable discussions with Profs. D. Reichert and P. K. Madhu. Part of this study was supported by the Europäischer Sozialfonds (ESF 22117016 and 24127009). We would like to thank the group of Annette G. Beck-Sickinger for the TAMRA labeled NPY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Huster.

Additional information

Lars Thomas and Julian Kahr have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, L., Kahr, J., Schmidt, P. et al. The dynamics of the G protein-coupled neuropeptide Y2 receptor in monounsaturated membranes investigated by solid-state NMR spectroscopy. J Biomol NMR 61, 347–359 (2015). https://doi.org/10.1007/s10858-014-9892-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-014-9892-5

Keywords

Navigation