Skip to main content
Log in

Sulfonyl-bridged oligo(benzoic acid)s: synthesis, X-ray structures, and properties as metal extractants

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Sulfonyl-bridged oligo(benzoic acid)s 7 n (n = 2–4) are prepared from the corresponding triflate esters (8 n ) of sulfur-bridged oligophenols by palladium-catalyzed methoxycarbonylation of the triflate moieties, followed by hydrolysis of the resulting methyl esters, and subsequent oxidation of the sulfur bridges. X-ray analysis reveals that dimer 7 2 forms supramolecular zig-zag chains through intermolecular hydrogen bonds between the carboxy groups. As for the crystal of trimer 7 3 , two molecules are associated through two couples of intermolecular hydrogen bonds between terminal and central carboxy groups to form a cyclic dimer, which connects with two adjacent dimers with the remaining carboxy groups to construct an infinite columnar structure. Tetramer 7 4 adopts a monomolecular cyclic structure through intramolecular hydrogen bonds between the terminal carboxy groups, and a molecule connects with each of two adjacent molecules through two couples of intermolecular hydrogen bonds between inner carboxy and sulfonyl groups. Solvent extraction experiments reveal that the oligo(benzoic acid)s exhibit high extractability toward lanthanoid ions (Ln3+); the performance follows the order 7 4  ≈ 7 3  > 7 2 . Moderate extraction selectivity is observed for the extraction of Pr3+, Gd3+, and Yb3+ with 7 2 . X-ray crystallographic analysis of cluster [Tb4L4(H2O)6](Et3NH)4, which was prepared from 7 4 (H4L) and Tb(NO3)3·6H2O in the presence of Et3N, reveals that no sulfonyl oxygens coordinate to the metal centers. This indicates that the high extractability of 7 4 originates from the electron-withdrawing nature of the sulfonyl function, which increases the acidity of two adjacent carboxy groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Galbraith, S.G., Tasker, P.A.: The design of ligands for the transport of metal salts in extractive metallurgy. Supramol. Chem. 17, 191–207 (2005)

    Article  CAS  Google Scholar 

  2. Dam, H.H., Reinhoudt, D.N., Verboom, W.: Multicoordinate ligands for actinide/lanthanide separations. Chem. Soc. Rev. 36, 366–377 (2007)

    Article  Google Scholar 

  3. Wang, W., Cheng, C.Y.: Separation and purification of scandium by solvent extraction and related technologies: a review. J. Chem. Technol. Biotechnol. 86, 1237–1246 (2011)

    Article  CAS  Google Scholar 

  4. Gutsche, C.D.: Calixarenes Revisited. The Royal Society of Chemistry, Cambridge (1998)

    Google Scholar 

  5. Mandolini, L., Ungaro, R. (eds.): Calixarenes in Action. Imperial College Press, London (2000)

    Google Scholar 

  6. Asfari, Z., Böhmer, V., Harrowfield, J., Vicens, J., Saadioui, M. (eds.): Calixarenes 2001. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  7. Delmau, L.H., Simon, N., Schwing-Weill, M.-J., Arnaud-Neu, F., Dozol, J.-F., Eymard, S., Tournois, B., Böhmer, V., Grüttner, C., Musigmann, C., Tunayar, A.: ‘CMPO-substituted’ calix[4]arenes, extractants with selectivity among trivalent lanthanides and between trivalent actinides and lanthanides. Chem. Commun. 1627–1628 (1998)

  8. Delmau, L.H., Simon, N., Schwing-Weill, M.-J., Arnaud-Neu, F., Dozol, J.-F., Eymard, S., Tournois, B., Grüttner, C., Musigmann, C., Tunayar, A., Böhmer, V.: Extraction of trivalent lanthanides and actinides by “CMPO-like” calixarenes. Sep. Sci. Technol. 34, 863–876 (1999)

    CAS  Google Scholar 

  9. Jurečka, P., Vojtíšek, P., Novotný, K., Rohovec, J., Lukeš, I.: Synthesis, characterisation and extraction behaviour of calix[4]arene-based phosphonic acids. J. Chem. Soc. Perkin Trans. 2, 1370–1377 (2002)

    Article  Google Scholar 

  10. Matulková, I., Rohovec, J.: Synthesis, characterization and extraction behaviour of calix[4]arene with four propylene phosphonic acid groups on the lower rim. Polyhedron 24, 311–317 (2005)

    Article  Google Scholar 

  11. Ohto, K., Matsufuji, T., Yoneyama, T., Tanaka, M., Kawakita, H., Oshima, T.: Preorganized, cone-conformational calix[4]arene possessing four propylenephosphonic acids with high extraction ability and separation efficiency for trivalent rare earth elements. J. Incl. Phenom. Macrocycl. Chem. 71, 489–497 (2011)

    Article  CAS  Google Scholar 

  12. Ohto, K., Yano, M., Inoue, K., Yamamoto, T., Goto, M., Nakashio, F., Shinkai, S., Nagasaki, T.: Solvent extraction of trivalent rare earth metal ions with carboxylate derivatives of calixarenes. Anal. Sci. 11, 893–902 (1995)

    Article  CAS  Google Scholar 

  13. Ohto, K., Yano, M., Inoue, K., Nagasaki, T., Goto, M., Nakashio, F., Shinkai, S.: Effect of coexisting alkaline metal ions on the extraction selectivity of lanthanide ions with calixarene carboxylate derivatives. Polyhedron 16, 1655–1661 (1997)

    Article  CAS  Google Scholar 

  14. He, W., Liao, W., Niu, C., Li, D.: Synergistic extraction of rare earths using acid–base coupling extractants of calix[4]arene carboxyl derivative and primary amine N1923. Sep. Purif. Technol. 62, 674–680 (2008)

    Article  CAS  Google Scholar 

  15. Iki, N., Morohashi, N., Narumi, F., Miyano, S.: High complexation ability of thiacalixarene with transition metal ions. The effects of replacing methylen bridges of tetra(p-t-butyl)calix[4]arenetetrol by epithio groups. Bull. Chem. Soc. Jpn. 71, 1597–1603 (1998)

    Article  CAS  Google Scholar 

  16. Morohashi, N., Iki, N., Sugawara, A., Miyano, S.: Selective oxidation of thiacalix[4]arenes to the sulfinyl and sulfonyl counterparts and their comlexation abilities toward metal ions as studied by solvent extraction. Tetrahedron 57, 5557–5563 (2001)

    Article  CAS  Google Scholar 

  17. Kajiwara, T., Iki, N., Yamashita, M.: Transition metal and lanthanide cluster complexes constructed with thiacalix[n]arene and its derivatives. Coord. Chem. Rev. 251, 1734–1746 (2007)

    Article  CAS  Google Scholar 

  18. Pearson, R.G.: Hard and soft acids and bases. J. Am. Chem. Soc. 85, 3533–3539 (1963)

    Article  CAS  Google Scholar 

  19. Pearson, R.G.: Hard and soft acids and bases, HSAB, Part I fundamental principles. J. Chem. Educ. 45, 581–587 (1968)

    Article  CAS  Google Scholar 

  20. González, J.J., Nieto, P.M., Prados, P., Echavarren, A.M., de Mendoza, J.: Calix[4]arene sulfonates: palladium-catalyzed intermolecular migration of sulfonyl groups and isolation of a calix[4]arene in a chiral 1,2-alternate conformation. J. Org. Chem. 60, 7419–7423 (1995)

    Article  Google Scholar 

  21. Chowdhury, S., Bridson, J.N., Georghiou, P.E.: Synthesis of calix[4]arene triflates and their unusual chemical reactivity in palladium-catalyzed reactions. J. Org. Chem. 65, 3299–3302 (2000)

    Article  CAS  Google Scholar 

  22. Al-Saraierh, H., Miller, D.O., Georghiou, P.E.: Narrow-rim functionalization of calix[4]arenes via Sonogashira coupling reactions. J. Org. Chem. 70, 8273–8280 (2005)

    Article  CAS  Google Scholar 

  23. Tanaka, S., Serizawa, R., Morohashi, N., Hattori, T.: Ullmann coupling reaction of 1,3-bistriflate esters of calix[4]arenes: facile syntheses of monoaminocalix[4]arenes and 4,4′:6,6′-diepithiobis(phenoxathiine). Tetrahedron Lett. 48, 7660–7664 (2007)

    Article  CAS  Google Scholar 

  24. Nakamura, Y., Tanaka, S., Serizawa, R., Morohashi, N., Hattori, T.: Synthesis of mono- and 1,3-diaminocalix[4]arenes via Ullmann-type amination and amidation of 1,3-bistriflate esters of calix[4]arenes. J. Org. Chem. 76, 2168–2179 (2011)

    Article  CAS  Google Scholar 

  25. Morohashi, N., Hayashi, T., Nakamura, Y., Kobayashi, T., Tanaka, S., Hattori, T.: Selective extraction of heavy rare-earth-metal ions with a novel calix[4]arene-based diphosphonic acid. Chem. Lett. 41, 1520–1522 (2012)

    Article  CAS  Google Scholar 

  26. Iki, N., Morohashi, N., Yamane, Y., Miyano, S.: Metal-ion extractability of sulfur-bridged oligomers of phenol; distinct effect of the number of sulfur bridges rather than the cyclic/acyclic form. Bull. Chem. Soc. Jpn. 76, 1763–1768 (2003)

    Article  CAS  Google Scholar 

  27. Morohashi, N., Teraura, H., Ohba, Y.: New trend in structural organic chemistry. In: Takemura, H. (ed.) Extractability of Cyclic and Linear Phenol Oligomers Having Sulfur Bridge, Chap. 2, pp. 39–60. Research Signpost, Kerala (2005)

  28. Morohashi, N., Akahira, Y., Tanaka, S., Nishiyama, K., Kajiwara, T., Hattori, T.: Synthesis of a sulfur-bridged diphosphine ligand and its unique complexation properties toward palladium(II) ion. Chem. Lett. 37, 418–419 (2008)

    Article  CAS  Google Scholar 

  29. Morohashi, N., Nagata, K., Tanaka, S., Ohba, Y., Hattori, T.: Sulfur-bridged oligo(benzoic acid)s as a novel family of metal extractants. Chem. Lett. 37, 1228–1229 (2008)

    Google Scholar 

  30. Akahira, Y., Nagata, K., Morohashi, N., Hattori, T.: Synthesis of novel dihydroxydiphosphines and dihydroxydicarboxylic acids having a tetra(thio-1,3-phenylene-2-yl) backbone. Supramol. Chem. 23, 144–155 (2011)

    Article  CAS  Google Scholar 

  31. Ohba, Y., Moriya, K., Sone, T.: Synthesis and inclusion properties of sulfur-bridged analogs of acyclic phenol-formaldehyde oligomers. Bull. Chem. Soc. Jpn. 64, 576–582 (1991)

    Article  CAS  Google Scholar 

  32. SMART, SAINT, and XPREP: Area Detector Control and Data Integration and Reduction Software. Bruker Analytical X-ray Instruments Inc, Madison (1995)

  33. Sheldrick, G.M.: SADABS, Empirical Absorption Correction Program for Area Detector Data. University of Göttingen, Göttingen (1996)

    Google Scholar 

  34. Sheldrick, G.M.: SHELEX-97, Programs for the Refinement of Crystal Structures. University of Göttingen, Göttingen (1997)

    Google Scholar 

  35. Wakita, K. Yadokari-XG, Software for Crystal Structure Analyses (2001)

  36. Kabuto, C., Akine, S., Nemoto, T., Kwon, E.: Release of software (Yadokari-XG 2009) for crystal structure analyses. J. Cryst. Soc. Jpn. 51, 218–224 (2009)

    Article  Google Scholar 

  37. Cacchi, S., Ciattini, P.G., Morera, E., Ortar, G.: Palladium-catalyzed carbonylation of aryl triflates. Synthesis of arenecarboxylic acid derivatives from phenols. Tetrahedron Lett. 27, 3931–3934 (1986)

    Article  CAS  Google Scholar 

  38. Hotta, H., Suzuki, T., Miyano, S., Inoue, Y.: Convenient preparation of axially chiral 1,1′-binaphthyl-2-carboxylates via the palladium-catalyzed carbonylation of 1,1′-binaphthyl-2-yl triflates. J. Mol. Catal. 54, L5–L7 (1989)

    Article  CAS  Google Scholar 

  39. Ohta, T., Ito, M., Inagaki, K., Takaya, H.: A convinient synthesis of optically pure dimethyl 1,1′-binaphtalene-2,2′-dicarboxylare from 1,1′-binaphthalene-2,2′-diol. Tetrahedron Lett. 34, 1615–1616 (1993)

    Article  CAS  Google Scholar 

  40. Morohashi, N., Noji, S., Nakayama, H., Kudo, Y., Tanaka, S., Kabuto, C., Hattori, T.: Unique inclusion properties of crystalline powder p-tert-butylthiacalix[4]arene toward alcohols and carboxylic acids. Org. Lett. 13, 3292–3295 (2011)

    Article  CAS  Google Scholar 

  41. Morohashi, N., Shibata, O., Hattori, T.: Absorption of chlorinated hydrocarbons dissolved in water with pellets made of p-tert-butylcalix[4]arene and silica gel. Chem. Lett. 41, 1412–1413 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. K. Itaya (Tohoku University) for courteous permission to use instruments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Naoya Morohashi or Tetsutaro Hattori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morohashi, N., Nagata, K., Hayashi, T. et al. Sulfonyl-bridged oligo(benzoic acid)s: synthesis, X-ray structures, and properties as metal extractants. J Incl Phenom Macrocycl Chem 78, 161–170 (2014). https://doi.org/10.1007/s10847-012-0283-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-012-0283-9

Keywords

Navigation