Skip to main content

Advertisement

Log in

Optical long baseline intensity interferometry: prospects for stellar physics

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

More than sixty years after the first intensity correlation experiments by Hanbury Brown and Twiss, there is renewed interest for intensity interferometry techniques for high angular resolution studies of celestial sources. We report on a successful attempt to measure the bunching peak in the intensity correlation function for bright stellar sources with 1 meter telescopes (I2C project). We propose further improvements of our preliminary experiments of spatial interferometry between two 1 m telescopes, and discuss the possibility to export our method to existing large arrays of telescopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Capraro, I, Barbieri, C, Naletto, G, Occhipinti, T, Verroi, E, Zoccarato, P, Gradari, S: Quantum astronomy with Iqueye. Proc. SPIE 7702, 77,020M (2010)

    Article  Google Scholar 

  2. Cassinelli, J P, Hoffman, N M: The effect of linearly polarized light from extended stellar atmospheres on interferometer response functions. MNRAS 173, 789–800 (1975)

    Article  ADS  Google Scholar 

  3. Dravins, D, LeBohec, S: Toward a diffraction-limited square-kilometer optical telescope: digital revival of intensity interferometry. Proc. SPIE 6986, 698,609 (2008)

    Article  Google Scholar 

  4. Dravins, D, LeBohec, S, Jensen, H, Nunez~, PD: Optical intensity interferometry with the Cherenkov Telescope Array. Astropart. Phys. 43, 331–447 (2013)

    Article  ADS  Google Scholar 

  5. Dussaux, A, de Silans, PT, Guerin, W, Alibart, O, Tanzilli, S, Vakili, F, Kaiser, R: Temporal intensity correlation of light scattered by a hot atomic vapor. Phys. Rev. A 93, 043,826 (2016)

    Article  Google Scholar 

  6. Garcia, E V, Muterspaugh, M W, van Belle, G, Monnier, J D, Stassun, K G, Ghasempour, A, Clark, J H, Zavala, R T, Benson, J A, Hutter, D J, et al.: VISION: a six-telescope fiber-fed visible light beam combiner for the navy precision optical interferometer. PASP 128, 055004 (2016)

    Article  ADS  Google Scholar 

  7. Gomes, N, Garcia, P J V, Thiébaut, E: Assessing the quality of restored images in optical long-baseline interferometry. MNRAS 465, 3823–3839 (2017)

    Article  ADS  Google Scholar 

  8. Guerin, W, Dussaux, A, Fouché, M, Labeyrie, G, Rivet, J P, Vernet, D, Vakili, F, Kaiser, R: Temporal intensity interferometry: photon bunching in three bright stars. MNRAS 472, 4126–4132 (2017)

    Article  ADS  Google Scholar 

  9. Hanbury Brown, R: Stellar interferometer at Narrabri observatory. Nature 218, 637–641 (1968)

    Article  Google Scholar 

  10. Hanbury Brown, R: The intensity interferometer: its application to astronomy. Taylor and Francis, New York (1974)

    Google Scholar 

  11. Hanbury Brown, R, Twiss, RQ: Correlation between photons in two coherent beams of light. Nature 177, 27–29 (1956)

    Article  ADS  Google Scholar 

  12. Hanbury Brown, R, Twiss, RQ: A test of a new type of stellar interferometer on Sirius. Nature 178, 1046–1048 (1956)

    Article  ADS  Google Scholar 

  13. Hanbury Brown, R, Jennison, RC, Gupta, MKD: Apparent angular sizes of discrete radio sources: Observations at Jodrell Bank, Manchester. Nature 170, 1061–1063 (1952)

    Article  ADS  Google Scholar 

  14. Hanbury Brown, R, Davis, J, Allen, LR: The stellar interferometer at Narrabri observatory—I. MNRAS 137, 375–392 (1967)

    Article  ADS  Google Scholar 

  15. Hanbury Brown, R, Davis, J, Allen, LR, Rome, JM: The stellar interferometer at Narrabri observatory—II. MNRAS 137, 393–417 (1967)

    Article  ADS  Google Scholar 

  16. Hanbury Brown, R, Davis, J, Allen, LR: The angular diameters of 32 stars. MNRAS 167, 121–136 (1974)

    Article  ADS  Google Scholar 

  17. Hanbury Brown, R, Davis, J, Allen, LR: An attempt to detect a corona around beta Orionis with an intensity interferometer using linearly polarized light. MNRAS 168, 93–100 (1974)

    Article  ADS  Google Scholar 

  18. Labeyrie, A: Interference fringes obtained on Vega with two optical telescopes. ApJ 196, L71–L75 (1975)

    Article  ADS  Google Scholar 

  19. Labeyrie, A, Schumacher, G, Dugué, M, Thom, C, Bourlon, P: Fringes obtained with the large ‘boules’ interferometer at CERGA. A&A 162, 359–364 (1986)

    ADS  Google Scholar 

  20. LeBohec, S, Holder, J: Optical intensity interferometry with atomospheric Cherenkov telescope array. ApJ 649, 399–405 (2006)

    Article  ADS  Google Scholar 

  21. Lopez, B, Lagarde, S, Jaffe, W, Petrov, R, Schöller, M, Antonelli, P, Beckman, U, Berio, P, Bettonvil, F, Graser, U, et al.: MATISSE status report and science forecast. Proc. SPIE 9146, 91,460Z (2014)

    Article  Google Scholar 

  22. Malvimat, V, Wucknitz, O, Saha, P: Intensity interferometry with more than two detectors? MNRAS 437, 798–803 (2014)

    Article  ADS  Google Scholar 

  23. Matthews, N, Kieda, D, LeBohec, S: Development of a digital astronomical intensity interferometer: laboratory results with thermal light. J. Mod. Opt. 65, 1336–1344 (2017)

    Article  ADS  Google Scholar 

  24. Mills, B Y: Apparent angular sizes of discrete radio sources: observations at Sydney. Nature 170, 1063–1064 (1952)

    Article  ADS  Google Scholar 

  25. Mourard, D, Monnier, J D, Meilland, A, Gies, D, Millour, F, Benisty, M, Che, X, Grundstrom, E D, Ligi, R, Schaefer, G, et al.: Spectral and spatial imaging of the Be+sdO binary ϕ Persei. A&A 577, A51 (2015)

    Article  ADS  Google Scholar 

  26. Naletto, G, Barbieri, C, Occhipinti, T, Capraro, I, Di Paola, A, Facchinetti, C, Verroi, E, Zoccarato, P, Anzolin, G, Belluso, M, et al: Iqueye, a single photon-counting photometer applied to the ESO new technology telescope. A&A 508, 531–539 (2009)

    Article  ADS  Google Scholar 

  27. Nuñez, P D, Holmes, R, Kieda, D, LeBohec, S: High angular resolution imaging with stellar intensity interferometry using air Cherenkov telescope array. MNRAS 419, 172–183 (2012)

    Article  ADS  Google Scholar 

  28. Petrov, R G, Malbet, F, Weigelt, G, Antonelli, P, Beckmann, U, Bresson, Y, Chelli, A, Dugué, M, Duvert, G, Gennari, S, Glück, L, Kern, P, Lagarde, S, Le Coarer, E, Lisi, F, Millour, F, Perraut, K, Puget, P, Rantakyrö, F, et al.: AMBER, the near-infrared spectro-interferometric three-telescope VLTI instrument. A&A 464, 1–12 (2007)

    Article  ADS  Google Scholar 

  29. Pilyavsky, G, Mauskopf, P, Smith, N, Schroeder, E, Sinclair, A, van Belle, G T, Hinkel, N, Scowen, P: Single-photon intensity interferometry (SPIIFy): utilizing available telescopes. MNRAS 467, 3048–3055 (2017)

    Article  ADS  Google Scholar 

  30. Samain, E: Clock comparison based on laser ranging technologies. Int. J. Mod. Phys. D 24, 021 (1530)

    Google Scholar 

  31. Smith, F G: Apparent angular sizes of discrete radio sources: observations at Cambridge. Nature 170, 1065 (1952)

    Article  ADS  Google Scholar 

  32. Tan, P K, Yeo, G H, Poh, H S, Chan, A H, Kurtsiefer, C: Measuring temporal photon bunching in backbody radiation. ApJ 789, L10 (2014)

    Article  ADS  Google Scholar 

  33. Tan, P K, Chan, A H, Kurtsiefer, C: Optical intensity interferometry through atmospheric turbulence. MNRAS 457, 4291 (2016)

    Article  ADS  Google Scholar 

  34. Trippe, S, Kim, J Y, Lee, B, Choi, C, Oh, J, Lee, T, Yoon, S C, Im, M, Park, Y S: Optical multi-channel intensity interferometry—or: how to resolve O-stars in the Magellanic clouds. J. Kor. Astron. Soc. 47, 235–253 (2014)

    Article  ADS  Google Scholar 

  35. Vakili, F: Study of stellar polarization with the CERGA interferometer. A&A 101, 352–355 (1981)

    ADS  Google Scholar 

  36. Vakili, F, Mourard, D, Bonneau, D, Stee, P: Subtle structures in the wind of P Cygni. A&A 323, 183–188 (1997)

    ADS  Google Scholar 

  37. Zampieri, L, Naletto, G, Barbieri, C, Barbieri, M, Verroi, E, Umbriaco, G, Favazza, P, Lessio, L, Farisato, G: Intensity interferometry with Aqueye+ and Iqueye in Asiago. Proc. SPIE 9907, 99,070N (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The I2C pilot experiment is supported by INPHYNI and Lagrange laboratories, Döblin Federation and grants from OCA and the Excellence Initiative UCA-JEDI from University Côte d’Azur. We are grateful to A. Dussaux for his valuable contribution to this project. We also thank E. Samain, C. Courde and J. Chabé (GeoAzur lab., OCA) for fruitful discussions about space and time metrology. Ph. Bério from Lagrange Laboratory (OCA) is also kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Rivet.

Additional information

This article is part of the Topical Collection on Future of Optical-infrared Interferometry in Europe

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivet, JP., Vakili, F., Lai, O. et al. Optical long baseline intensity interferometry: prospects for stellar physics. Exp Astron 46, 531–542 (2018). https://doi.org/10.1007/s10686-018-9595-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-018-9595-0

Keywords

Navigation