Skip to main content
Log in

A new four-node quadrilateral plate bending element for highly sparse and banded flexibility matrices

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, an efficient method is developed for the formation of null bases of four-node quadrilateral plate bending finite element models, corresponding to highly sparse and banded flexibility matrices. This is achieved by introducing a new four-node quadrilateral plate bending element, and using special graphs associated with the finite element models. The results are compared to those of the previously developed graph theoretical and algebraic force methods, and also the displacement approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Henderson J.C., de C.: Topological aspects of structural analysis. Aircr. Eng. 32, 137–141 (1960)

    Article  Google Scholar 

  2. Maunder, E.A.W.: Topological and linear analysis of skeletal structures. Ph.D. Thesis, London University, Imperial College (1971)

  3. Henderson J.C., de C., Maunder E.A.W.: A problem in applied topology. J. Inst. Math. Appl. 5, 254–269 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kaveh, A.: Application of topology and matroid theory to the analysis of structures, Ph.D. Thesis, London University, Imperial College (1974)

  5. Kaveh A.: Improved cycle bases for the flexibility analysis of structures. Comput. Methods Appl. Mech. Eng. 9, 267–272 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kaveh A.: A combinatorial optimization problem; optimal generalized cycle bases. Comput. Methods Appl. Mech. Eng. 20, 39–52 (1979)

    Article  MATH  Google Scholar 

  7. Cassell A.C.: An alternative method for finite element analysis: a combinatorial approach to the flexibility method. Proc. R. Soc. Lond. A 352, 73–89 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Denke, P.H.: A general digital computer analysis of statically indeterminate structures, NASA-TD-D-1666 (1962)

  9. Robinson J.: Integrated Theory of Finite Element Methods. Wiley, NY (1973)

    MATH  Google Scholar 

  10. Topçu, A.: A contribution to the systematic analysis of finite element structures using the force method (in German), Doctoral Dissertation, Essen University (1979)

  11. Kaneko I., Lawo M., Thierauf G.: On computational procedures for the force methods. Int. J. Numer. Methods Eng. 18, 1469–1495 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Soyer E., Topçu A.: Sparse self-stress matrices for the finite element force method. Int. J. Numer. Methods Eng. 50, 2175–2194 (2001)

    Article  MATH  Google Scholar 

  13. Gilbert J.R., Heath M.T.: Computing a sparse basis for the null space. SIAM J. Alg. Dis. Meth. 8, 446–459 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Coleman T.F., Pothen A.: The null space problem I: complexity. SIAM J. Alg. Dis. Meth. 7(4), 527–537 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Coleman T.F., Pothen A.: The null space problem II: algorithms. SIAM J. Alg. Dis. Meth. 8(4), 544–561 (1987)

    Article  MathSciNet  Google Scholar 

  16. Pothen A.: Sparse null basis computation in structural optimization. Numerische Mathematik 55, 501–519 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Patnaik S.N.: Integrated force method versus the standard force method. Comput. Struct. 22, 151–164 (1986)

    Article  MATH  Google Scholar 

  18. Patnaik S.N.: The variational formulation of the integrated force method. AIAA J. 24, 129–137 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kaveh A., Koohestani K., Taghizadieh N.: Efficient finite element analysis by graph-theoretical force method. Finite Elem. Anal. Des. 43, 543–554 (2007)

    Article  Google Scholar 

  20. Kaveh A., Koohestani K.: Efficient finite element analysis by graph-theoretical force method: triangular and rectangular plate bending elements. Finite Elem. Anal. Des. 44, 646–654 (2008)

    Article  Google Scholar 

  21. Kaveh A., Koohestani K.: Efficient graph-theoretical force method for three dimensional finite element analysis. Commun. Numer Methods Eng. 24, 1533–1551 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kaveh, A., Naseri Nasab, E.: A new triangular plane stress and plane strain element for sparse and banded flexibility matrices via force method. Finite Elem. Anal. Des. (2009)

  23. Kaveh A.: Optimal Structural Analysis, 2nd edn. Wiley, Somerset (2006)

    Book  MATH  Google Scholar 

  24. Kaveh A., Roosta G.R.: Comparative study of finite element nodal ordering methods. Struct. Eng. 20(1–2), 86–96 (1998)

    Article  Google Scholar 

  25. Kaveh A.: Structural Mechanics: Graph and Matrix Methods, 3rd edn. Research Studies Press, Somerset (2004)

    Google Scholar 

  26. Kaveh A., Koohestani K., Taghizadieh N.: Force method for finite element models with indeterminate support conditions. Asian J. Civil Eng. 8, 403–417 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kaveh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaveh, A., Nasab, E.N. A new four-node quadrilateral plate bending element for highly sparse and banded flexibility matrices. Acta Mech 209, 295–309 (2010). https://doi.org/10.1007/s00707-009-0180-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-009-0180-5

Keywords

Navigation