Skip to main content
Log in

Resistorless floating immittance function simulators employing current controlled conveyors and a grounded capacitor

  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

In this paper, new floating immittance function simulators employing second-generation current controlled conveyors are proposed. The first four of the presented circuits employ only a single grounded capacitor as passive component and can realize either a negative or a positive floating inductor or capacitor. The last two of the proposed circuits do not employ passive components and can realize either negative or positive floating resistances. All of the proposed circuits do not require passive element matching. As an application, a third-order butterworth filter is realized using the proposed positive floating inductance simulator. SPICE simulation results and large signal behavior of the filter are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sedra AS, Smith KC (1970) A second-generation current conveyor and its applications. IEEE Trans Circuit Theory 17:132–134

    Article  Google Scholar 

  2. Higashimura M, Fukui Y (1988) Novel method for realizing higher-order immittance function using current conveyors. IEEE ISCAS'88:2677–2680

    Google Scholar 

  3. Ishida M, Higashimura M, Fukui Y, Ebisutani K (1988) Synthesis of immittance function using current conveyors. IEEE ISCAS'88:2681–2684

    Google Scholar 

  4. Himura A, Fukui Y, Ishida M, Higashimura M (1989) Immittance function simulator using a current conveyor. IEICE Trans E2:1279–1284

    Google Scholar 

  5. Chang CM, Wang HY, Chien CC (1994) Realization of series impedance functions using one CCII+. Int J Electron 76:83–85

    Google Scholar 

  6. Liu SI, Yang CY (1996) Higher-order immittance function synthesis using CCIIIs. Electron Lett 32:2295–2296

    Article  Google Scholar 

  7. Wang HY, Lee CT (2000) Systematic synthesis of R-L and C-D immittances using single CCIII. Int J Electron 87:293–301

    Article  Google Scholar 

  8. Cicekoglu O, Toker A, Kuntman H (2001) Universal immittance function simulators using current conveyors. Comput Electr Eng 27:227–238

    Article  MATH  Google Scholar 

  9. Higashimura M, Fukui Y (1987) Novel method for realizing lossless floating immittance using current conveyors. Electron Lett 23:498–499

    Google Scholar 

  10. Hou CL, Chen RD, Wu YP, Hu PC (1993) Realization of grounded and floating immittance function simulators using current conveyors. Int J Electron 74: 917–923

    Google Scholar 

  11. Al-Walaie SA, Alturaigi MA (1997) Current mode simulation of lossless floating inductance. Int J Electron 83:825–829

    Article  Google Scholar 

  12. Abuelma'Atti MT (1999) Comments on current mode simulation of lossless floating inductance. Int J Electron 86:321–322

    Article  Google Scholar 

  13. Fabre A, Saaid O, Wiest F, Boucheron C (1996) High frequency applications based on a new current controlled conveyor. IEEE Trans Circuits Syst I: Fundam Theory Appl 43:82–91

    Google Scholar 

  14. Kiranon W, Pawarangkoon P (1997) Floating inductance simulation based on current conveyors. Electron Lett 33:1748–1749

    Article  Google Scholar 

  15. Abuelma'Atti MT, Tasadduq NM (1998) A novel single-input multiple-output current-mode current-controlled universal filter. Microelectron J 29:901–905

    Article  Google Scholar 

  16. Abuelma'Atti MT, Tasadduq NM (1998) Universal current- controlled current-mode filter using the multiple-output translinear current conveyor. Frequenz 52:252–254

    Google Scholar 

  17. Abuelma'Atti MT, Tasadduq NM (1999) Electronically tunable capacitance multiplier and frequency-dependent negative- resistance simulator using the current-controlled current conveyor. Microelectron J 30:869–873

    Article  Google Scholar 

  18. Minaei S, Turkoz S (2000) New current-mode current-controlled universal filter implemented from single-output current controlled conveyors. Frequenz 54:138–140

    Google Scholar 

  19. Khan I, Maheshwari S (2000) Simple first order all-pass section using a single CCII. Int J Electron 87:303–306

    Article  Google Scholar 

  20. Minaei S, Turkoz S (2001) New current-mode current-controlled universal filter with single input and three outputs. Int J Electron 88:333–337

    Article  Google Scholar 

  21. Minaei S, Cicekoglu O, Kuntman H, Turkoz S (2001) High output impedance current-mode lowpass, bandpass and highpass filters using current controlled conveyors. Int J Electron 88:915–922

    Article  Google Scholar 

  22. Minaei S, Cicekoglu O, Kuntman H, Turkoz S (2002) Electronically tunable, active only floating inductance simulation. Int J Electron 89:905–912

    Article  Google Scholar 

  23. Shah NA, Iqbal Z (2003) Current-mode active-only universal filter. Int J Electron 90:407–411

    Article  Google Scholar 

  24. Anuntahirunrat K, Tangsrirat W, Riewruja V, Surakampontorn W (2004) Sinusoidal frequency doubler and full-wave rectifier based on translinear current-controlled current conveyors. Int J Electron 91:227–239

    Article  Google Scholar 

  25. Chang CM, Al-Hashimi BM, Ross JN (2004) Unified active filter biquad structures. IEE Proc- Circuit Devices Syst 151:273–277

  26. Bruton LT (1997) RC active circuits: theory and design. Prentice Hall, Englewood Cliffs, NJ, USA

    Google Scholar 

  27. Papazoglou CA, Karybakas CA (1997) Noninteracting electronically tunable CCII-based current-mode biquadratic filters. IEE Proc- Circuits Devices Syst 144:178–184

    Google Scholar 

  28. Fabre A, Saaid O, Barthelemy H (1995) On the frequency limitations of the circuits based on second generation current conveyors. Analog Integr Circuits Signal Process 7:113–129

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahram Minaei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuce, E., Minaei, S. & Cicekoglu, O. Resistorless floating immittance function simulators employing current controlled conveyors and a grounded capacitor. Electr Eng 88, 519–525 (2006). https://doi.org/10.1007/s00202-005-0311-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-005-0311-5

Keywords

Navigation