Skip to main content

Advertisement

Log in

Identifying sources of Pb pollution in urban soils by means of MC-ICP-MS and TOF-SIMS

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Lead pollution was evaluated in 17 urban soils from parks and gardens in the city of Vigo (NW Spain). The Pb isotope ratios (207Pb/206Pb, 208Pb/204Pb, 206Pb/204Pb and 208Pb/206Pb) were determined after being measured by MC-ICP-MS. The association of the isotopes (204Pb, 206Pb, 207Pb and 208Pb) with the different components of the soil was studied using TOF-SIMS. The isotopic ranges obtained for the samples were between 1.116 and 1.203 (206Pb/207Pb), 2.044–2.143 (208Pb/206Pb), 37.206–38.608 (208Pb/204Pb), 15.5482–15.6569 (207Pb/204Pb) and 17.357–18.826 (206Pb/204Pb). The application of the three-end-member model indicates that the Pb derived from petrol is the main source of Pb in the soils (43.51 % on average), followed by natural or geogenic Pb (39.12 %) and industrial emissions (17.37 %). The emissions derived from coal combustion do not appear to influence the content of Pb in the soil. TOF-SIMS images show that the Pb mainly interacts with organic matter. This technique contributes to the understanding of the association of anthropogenic Pb with the components of the soil, as well as the particle size of these associations, thus allowing the possible sources of Pb to be identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abril GA, Wannaz ED, Mateos AC, Pignata ML (2014) Biomonitoring of airborne particulate matter emitted from a cement plant and comparison with dispersion modelling results. Atmos Environ 82:154–163. doi:10.1016/j.atmosenv.2013.10.020

    Article  CAS  Google Scholar 

  • Ajmone-Marsan F, Biasioli M (2010) Trace elements in soils of urban areas. Water Air Soil Pollut 213:121–143. doi:10.1007/s11270-010-0372-6

    Article  CAS  Google Scholar 

  • Alleman L (1997) Apport des isotopes stables du plomb au suivi des traces métalliques en Méditerranée et en Atlantique Nord. Ph.D., Thesis. University of Aix-Marseille III (in French)

  • Álvarez-Iglesias P, Quintana B, Rubio B, Pérez-Arlucea M (2007) Sedimentation rates and trace metal input history in intertidal sediments derived from 210Pb and 137Cs chronology. J Environ Radioact 98:229–250. doi:10.1016/j.jenvrad.2007.05.001

    Article  Google Scholar 

  • Álvarez-Iglesias P, Rubio B, Millos J (2012) Isotopic identification of natural vs. anthropogenic lead sources in marine sediments from the inner Ría de Vigo (NW Spain). Sci Total Environ 437:22–35. doi:10.1016/j.scitotenv.2012.07.063

    Article  Google Scholar 

  • Arenas-Lago D, Andrade ML, Lago-Vila M, Rodríguez-Seijo A, Vega FA (2014) Sequential extraction of heavy metals in soils from a copper mine: distribution in geochemical fractions. Geoderma 230–231:108–118. doi:10.1016/j.geoderma.2014.04.011

    Article  Google Scholar 

  • Barbaste M, Halicz L, Galy A, Medina B, Emteborg H, Adams FC, Lobinski R (2001) Evaluation of the accuracy of the determination of lead isotope ratios in wine by ICP MS using quadrupole, multicollector magnetic sector and time-of-flight analyzers. Talanta 54(2):307–317. doi:10.1016/S0039-9140(00)00651-2

    Article  CAS  Google Scholar 

  • Cerqueira B, Vega FA, Serra C, Silva LFO, Andrade ML (2011) Time of flight secondary ion mass spectrometry and high-resolution transmission electron microscopy/energy dispersive spectroscopy: a preliminary study of the distribution of Cu 2+ and Cu 2+/Pb 2+ on a Bt horizon surfaces. J Hazard Mater 195:422–431. doi:10.1016/j.jhazmat.2011.08.059

    Article  CAS  Google Scholar 

  • Chen J, Tan M, Li Y, Zhang Y, Lu W, Tong Y et al (2005) A lead isotope record of shanghai atmospheric lead emissions in total suspended particles during the period of phasing out of leaded gasoline. Atmos Environ 39:1245–1253. doi:10.1016/j.atmosenv.2004.10.041

    Article  CAS  Google Scholar 

  • Cheng H, Hu Y (2010) Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: a review. Environ Pollut 158:1134–1146. doi:10.1016/j.envpol.2009.12.028

    Article  CAS  Google Scholar 

  • Chiaradia M, Cupelin F (2000) Behaviour of airborne lead and temporal variations of its source effects in Geneva (Switzerland): comparison of anthropogenic versus natural processes. Atmos Environ 34:959–971. doi:10.1016/S1352-2310(99)00213-7

    Article  CAS  Google Scholar 

  • Clark HF, Hausladen DM, Brabander DJ (2008) Urban gardens: lead exposure, recontamination mechanisms, and implications for remediation design. Environ Res 107:312–319. doi:10.1016/j.envres.2008.03.003

    Article  CAS  Google Scholar 

  • Instituto Geográfico Nacional de España (2014) Base Cartográfica Numérica 1:25.000 (BCN25), Base Topográfica Nacional 1:25.000 (BTN25). Cedido por © Instituto Geográfico Nacional de España. http://www.cnig.es/. Accessed 22 May 2014

  • De la Cruz MTC, Laborda F, Callén MS, López JM, Mastral AM (2009) Study of Pb sources by Pb isotope ratios in the airborne PM10 of Zaragoza, Spain. J Environ Monit 11:2052–2057. doi:10.1039/B912274E

    Article  Google Scholar 

  • Díaz-Somoano M, Suárez-Ruiz I, Alonso JIG, Ruiz Encinar J, López-Antón MA, Martínez-Tarazona MR (2007) Lead isotope ratios in Spanish coals of different characteristics and origin. Int J Coal Geol 71:28–36. doi:10.1016/j.coal.2006.05.006

    Article  Google Scholar 

  • Erel Y, Veron A, Halicz L (1997) Tracing the transport of anthropogenic lead in the atmosphere and in soils using isotopic ratios. Geochim Cosmochim Acta 61:4495–4505. doi:10.1016/S0016-7037(97)00353-0

    Article  CAS  Google Scholar 

  • Ettler V, Mihaljevič M, Komárek M (2004) ICP-MS measurements of lead isotopic ratios in soils heavily contaminated by lead smelting: tracing the sources of pollution. Anal Bioanal Chem 378:311–317. doi:10.1007/s00216-003-2229-y

    Article  CAS  Google Scholar 

  • European Directive 98/70/EC (1998) Directive 98/70/EC of the European Parliament and of the Council of 13 October 1998 relating to the quality of petrol and diesel fuels and amending Council Directive 93/12/EEC. Official Journal L 350, 28 December 1998, pp 58–68

  • Farmer JG, Broadway A, Cave MR, Wragg J, Fordyce FM, Graham MC et al (2011) A lead isotopic study of the human bioaccessibility of lead in urban soils from Glasgow, Scotland. Sci Total Environ 409:4958–4965. doi:10.1016/j.scitotenv.2011.08.061

    Article  CAS  Google Scholar 

  • Flegal AR, Smith DR (1995) Measurements of environmental lead contamination and human exposure. Rev Environ Contam Toxicol 143:1–45. doi:10.1007/978-1-4612-2542-3_1

    CAS  Google Scholar 

  • Frostick A, Bollhöfer A, Parry D, Munksgaard N, Evans K (2008) Radioactive and radiogenic isotopes in sediments from Cooper Creek, Western Arnhem land. J Environ Radioact 99:468–482. doi:10.1016/j.jenvrad.2007.08.015

    Article  CAS  Google Scholar 

  • Galušková I, Mihaljevič M, Borůvka L, Drábek O, Frühauf M, Němeček K (2014) Lead isotope composition and risk elements distribution in urban soils of historically different cities Ostrava and Prague, the Czech Republic. J Geochem Explor. doi:10.1016/j.gexplo.2014.02.022

    Google Scholar 

  • Hamester M, Stechmann H, Steiger M, Dannecker W (1994) The origin of lead in urban aerosols—a lead isotopic ratio study. Sci Total Environ 146–47:321–323. doi:10.1016/0048-9697(94)90252-6

    Article  Google Scholar 

  • Hendershot WH, Duquette M (1986) A simple barium chloride method for determining cation exchange capacity and exchangeable cations. Soil Sci Soc Am J 50:605–608. doi:10.2136/sssaj1986.03615995005000030013x

    Article  Google Scholar 

  • Inter-organization programme for the sound management of chemicals (IOMC) (1998) Global opportunities for reducing the use of leaded gasoline. Geneva, Switzerland: United Nations Environment Programme (UNEP Chemicals). http://www.chem.unep.ch/pops/pdf/lead/toc.htm. Accessed 12 April 2014

  • Kabata-Pendias A (2010) Trace elements in soils and plants, fourth ed. CRC, New York. doi:10.1201/b10158

    Book  Google Scholar 

  • Komárek M, Ettler V, Chrastny V, Mihaljevic M (2008) Lead isotopes in environmental sciences: a review. Environ Int 34:562–577. doi:10.1016/j.envint.2007.10.0055

    Article  Google Scholar 

  • Kylander ME, Klaminder J, Bindler R, Weiss DJ (2010) Natural lead isotope variations in the atmosphere. Earth Planet Sci Lett 290:44–53. doi:10.1016/j.epsl.2009.11.055

    Article  CAS  Google Scholar 

  • Li H-b, Yu S, Li G-l, Deng H, Luo X-S (2011) Contamination and source differentiation of Pb in park soils along an urban–rural gradient in Shanghai. Environ Pollut 159:3536–3344. doi:10.1016/j.envpol.2011.08.013

    Article  CAS  Google Scholar 

  • Li H-b, Yu S, Li G-l, Deng H (2012) Lead contamination and source in Shanghai in the past century using dated sediment cores from urban park lakes. Chemosphere 88:1161–1169. doi:10.1016/j.chemosphere.2012.03.061

    Article  CAS  Google Scholar 

  • Macías F, Calvo de Anta R (2009) Niveles Genéricos de Referencia de Metales Pesados y otros elementos de traza en suelos de Galicia. Xunta de Galicia (in Spanish), Santiago de Compostela

    Google Scholar 

  • Martínez Cortizas A, Peiteado Varela E, Bindler R, Biester H, Cheburkin A (2012) Reconstructing historical Pb and Hg pollution in NW Spain using multiple cores from the Chao de Lamoso bog (Xistral Mountains). Geochim Cosmochim Acta 82:68–78. doi:10.1016/j.gca.2010.12.025

    Article  Google Scholar 

  • Mielke HW, Laidlaw MAS, Gonzales CR (2011) Estimation of leaded (Pb) gasoline’s continuing material and health impacts on 90 US urbanized areas. Environ Int 37:248–257. doi:10.1016/j.envint.2010.08.006

    Article  CAS  Google Scholar 

  • Millot R, Allègre CJ, Gaillardet J, Roy S (2004) Lead isotopic systematic of major river sediments: a new estimate of the Pb isotopic composition of the upper continental crust. Chem Geol 203:75–90. doi:10.1016/j.chemgeo.2003.09.00

    Article  CAS  Google Scholar 

  • Monna F, Lancelot J, Croudace IW, Cundy AB, Lewis JT (1997) Pb isotopic composition of airborne particulate material from France and the Southern United Kingdom: implications for Pb pollution sources in urban areas. Environ Sci Technol 31:2277–2286. doi:10.1021/es960870+

    Article  CAS  Google Scholar 

  • Monna F, Aiuppa A, Varrica D, Dongarra G (1999) Pb isotope composition in lichens and aerosols from eastern Sicily: insights into the regional impact of volcanoes on the environment. Environ Sci Technol 33:2517–2523. doi:10.1021/es9812251

    Article  CAS  Google Scholar 

  • Morton-Bermea O, Rodríguez-Salazar MT, Hernández-Álvarez E, García-Arreola ME, Lozano-Santacruz R (2011) Lead isotopes as tracers of anthropogenic pollution in urban topsoils of Mexico City. Chem Erde Geochem 71:189–195. doi:10.1016/j.chemer.2011.03.003

    Article  CAS  Google Scholar 

  • Mukai H, Furuta N, Fujii T, Ambe Y, Sakamoto K, Hashimoto Y (1993) Characterization of sources of lead in the urban air of Asia using ratios of stable lead isotopes. Environ Sci Technol 27:1347–1356. doi:10.1021/es00044a009

    Article  CAS  Google Scholar 

  • QGIS Development Team (2014) QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org. Accessed 22 January 2014

  • Renson V, Coenaerts J, Nys K, Mattielli N, Vanhaecke F, Fagel N et al (2011) Lead isotopic analysis for the identification of late bronze age pottery from Hala sultan tekke (Cyprus). Archaeometry 53:37–57. doi:10.1111/j.1475-4754.2010.00535.x

    Article  CAS  Google Scholar 

  • Rogowski J, Bem H (2007) Surface analysis of the size-fractioned urban aerosols by secondary ion mass spectrometry (ToF-SIMS). Cent Eur J Chem 132:132–143. doi:10.2478/s11532-006-0066-5

    Article  Google Scholar 

  • Slattery W, Conyers M, Aitken R (1999) Soil pH, aluminum, manganese and lime requirement. In: Peverill KI, Sparrow L, Reuter D (eds) Soil analysis: an interpretation manual. CSIRO, Australia, pp 103–125

    Google Scholar 

  • Sutherland RA (2003) Lead in grain size fractions of road-deposited sediment. Environ Pollut 121:229–237. doi:10.1016/S0269-7491(02)00219-1

    Article  CAS  Google Scholar 

  • Szynkowska MI, Pawlaczyk A, Rogowski J (2008) ToF-SIMS and SEM-EDS analysis of the surface of chosen bioindicators. Appl Surf Sci 255:1165–1169. doi:10.1016/j.apsusc.2008.05.148

    Article  CAS  Google Scholar 

  • Tan MG, Zhang GL, Li XL, Zhang YX, Yue WS, Chen JM et al (2006) Comprehensive study of lead pollution in Shanghai by multiple techniques. Anal Chem 78:8044–8050. doi:10.1021/ac061365q

    Article  CAS  Google Scholar 

  • Tomašević M, Vukmirović Z, Rajšić S, Tasić M, Stevanović B (2005) Characterization of trace metal particles deposited on some deciduous tree leaves in an urban area. Chemosphere 61:753–760. doi:10.1016/j. chemosphere .2005.03.077

    Article  Google Scholar 

  • Walkey A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 34:29–38. doi:10.1097/00010694-193401000-00003

    Article  Google Scholar 

  • Walraven N, van Os BJH, Klaver G, Middelburg JJ, Davies GR (2014) The lead (Pb) isotope signature, behaviour and fate of traffic-related lead pollution in roadside soils in The Netherlands. Sci Total Environ 472:888–900. doi:10.1016/j.scitotenv.2013.11.110

    Article  CAS  Google Scholar 

  • Xie RK, Seip HM, Liu L, Zhang DS (2009) Characterization of individual airborne particles in Taiyuan City, China. Air Qual Atmos Health 2:123–131. doi:10.1007/s11869-009-0039-x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Xunta de Galicia for financing the project EM2013/018. Vega, F.A. and Arenas-Lago, D. thank the Ministry of Science and Innovation and the Universidade of Vigo for the Ramón and Cajal grant and for the FPI-MICINN, respectively. We thank Li, H. for his help with the application of the three-end-member model and the Council of Vigo (Spain) for their help with the sample collection.

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Luisa Andrade.

Additional information

Responsible editor: Céline Guéguen

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 97 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Seijo, A., Arenas-Lago, D., Andrade, M.L. et al. Identifying sources of Pb pollution in urban soils by means of MC-ICP-MS and TOF-SIMS. Environ Sci Pollut Res 22, 7859–7872 (2015). https://doi.org/10.1007/s11356-014-4027-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-4027-9

Keywords

Navigation